
Bridging the Semantic Gap Between Business Processes and Semantic Web Services

433

Bridging The Semantic Gap Between Business Processes and Semantic Web

Services

Muhammad Ahtisham Aslam 1,Sören Auer 1,2, Jun Shen 3 , Klaus-Peter Fähnrich 1
1 Betriebliche Informationsysteme

University of Leipzig, Germany
2 Computer and Information Science Department

University of Pensylvania, USA
3 School of Information Systems and Technology

University of Wollongong, Australia

{aslam,auer,faehnrich}@informatik.uni-leipzig.de, auer@seas.upenn.edu, jshen@uow.edu.au

Abstract

Bridging the semantic gap between business process

models and semantic Web services becomes increasingly

important in order to help automating business process

integration in large organizations. Traditional workflow

languages (such as BPEL4WS) support the modeling of

business processes as syntax based compositions of Web

services. When such processes are exported as Web

services they as well expose syntactical interfaces. These

syntactical interfaces allow only static composition and

hence limit interactions between business partners. The

obstacles of syntax based integration and composition can

be addressed by enhancing business processes with

semantics. This enables us to 1) edit and model the

compositions of Web services on the basis of matching

semantics 2) provide semantically enriched descriptions of

business processes. In particular, it will support the

dynamic and automated discovery, invocation and

composition of business processes as semantic Web

services. In this paper we present a mapping strategy that

helps to overcome the syntactical limitations of BPEL

processes by presenting them as OWL-S semantic Web

services. The proposed strategy supports the mapping of

BPEL process descriptions to complete OWL-S suite of

ontologies (i.e. Profile, Process Model and Grounding

ontologies). A prototypical implementation of the proposed

approach has also been presented.

Keywords: Web Service, Semantic Web Service, Business

Process Modeling.

1 Introduction

The trend of developing business applications as

services resulted in quick adoption of Web services. With

the wide acceptance of the Web service technology

different workflow languages (e.g. BPEL4WS [6], MS

XLANG [13], IBM WSFL [7]) were developed. These

workflow languages can be used to model business

processes as compositions of multiple Web services to

perform complex tasks that a single Web service alone

cannot perform. Major drawbacks of these languages are 1)

they compose Web services on the basis of their syntactical

information 2) when these processes are exposed as Web

services they have same syntactical limitations as

traditional WSDL [3] services. Consequently, modeling

Web services compositions and discovering, invoking and

composing them on the basis of syntactical information is

not very efficient and (due to many single points of failure)

unreliable. Different research groups in the semantic Web

and semantic Web service (SWS) community are working

on developing standard languages (e.g. OWL-S [8],

WSDL-S [1] and WSMO [2]) to equip Web service with

semantics. The SWS community has also presented

different approaches to dynamically discover, invoke and

compose these services on the basis of matching semantics.

Due to dynamic and automated behavior of SWSs they are

getting more and more attraction of large business

organizations. The aim is to expose business processes as

SWSs to achieve the goal of business process automation.

At this stage an approach is needed that can be used to shift

existing business processes (e.g. BPEL processes) to SWSs

(e.g. OWL-S services) in an efficient and cost affective

way rather than to build semantic based business services

from scratch. Such an approach will help to 1) model the

composition of services on the basis of matching semantics

2) provide semantically enriched interfaces of business

processes (i.e. BPEL processes) as OWL-S composite

services. This semantically enriched information can be

used for dynamic discovery, invocation and composition of

business processes as SWSs.

Enhancing existing business processes with semantics

to enable them for semantic based composition modeling,

dynamic discovery, invocation and composition raises

following challenges:

Journal of Internet Technology Volume 8 (2007) No.4

434

• How to provide semantics of individual services

within a composition.

• Modeling the composition by defining control flow

between child services.

• Defining data flow between child services on the basis

of matching semantics.

• Exposing semantically enriched interfaces of resulting

composite services.

By successfully addressing these challenges we can

enable business processes to:

• Expose semantically enriched interfaces as Profile

ontologies for semantic based dynamic and automated

discovery, invocation and composition.

• Edit and model the composition on the basis of

matching semantic information rather than syntactical

information.

To achieve these goals by addressing above-

mentioned challenges we have developed a strategy (i.e.

mapping specifications) that can be used to map existing

BPEL processes to OWL-S SWSs. Even though, many

efforts have been done before to bridge the semantic gap

between process modeling languages (e.g. BPEL, FBPML

etc.) and OWL-S SWSs but our approach is unique with

respect to its support for mapping of BPEL processes to

complete OWL-S suite of ontologies.

The remaining paper is organized as follows: Section

2 describes a motivational scenario for our work. Mapping

specifications have been discussed in Section 3.

Implementation of the mapping tool has been discussed in

Section 4. Section 5 evaluates our approach. The related

work has been discussed in Section 6. Section 7 concludes

our work.

2 Motivational Scenario

In order to understand the problems raised due to

syntactical limitations of BPEL, we consider an example

scenario of Web services composition. To keep the

complexity of the scenario within limitations we consider a

simple Translator and Dictionary process example (BPEL

file of the process model and OWL files of mapped

OWL-S composite service and atomic processes are

available with the tool download1). The Translator and

Dictionary process is modeled in MS BizTalk Server as

syntax-based composition of the Translator service and the

Dictionary service. The Translator service is a Web service

that can be used to translate a string from one language to

another language. The Dictionary service is a Web service

that can be used to get the meaning of an English word in

English (i.e. only the English language is supported). Now

1 http://bpel4ws2owls.sourceforge.net/

we define two problem scenarios (tasks) that cannot be

performed by anyone of these two services.

1. How we can get the meaning of a German word in

English? Because the Dictionary service supports only

the meaning of an English word in English, not the

meaning of a German word in English.

2. How we can get the meaning of a German word in

German? Because the Translator service only translates

string from one language to other language (not give the

meaning of a word) and the Dictionary service only

gives the meaning of an English word in English.

In both of above scenarios none of a single Web

service (i.e. neither the Translator Service nor the

Dictionary service) is able to perform the required task. As

a solution, we model a BPEL process as syntax based

composition of the Translator service and the Dictionary

service to perform the required task. For the first problem

scenario we can define a workflow (i.e. a BPEL process) as

a composition of the Translator service and the Dictionary

service as follows (as shown in Figure 1):

1. The process accepts an input string (i.e. the German

word) from the user.

2. Transfers this string as an input to the Translator service

to translate the string from German to English.

3. Output of the Translator service (i.e. the English

translation of the input string) is given as an input to the

Dictionary service.

4. As a last step of the process, the Dictionary service

returns the meaning of the input string.

Similarly the task pointed in second scenario (i.e.

getting the meaning of the German word in German) can

be accomplished by enhancing the process model of Web

services composition by following steps (as shown in

Figure 2):

1. The output of the Dictionary service (i.e. the meaning

of the word) is given as input to the Translator service

to translate it back from English to German.

2. As a last step of the process the Translator service

translates the string (i.e. meaning of the word) back

from English to German.

Figure 1 Sequence of services in the process according to first scenario

Bridging the Semantic Gap Between Business Processes and Semantic Web Services

435

Figures 1 and 2 give examples of two processes as

Web services compositions to perform tasks identified in

problem Scenarios 1 and 2. If we analyze the process more

at semantic level then the following issues are identified:

• When the process is exported as a Web service, it

exposes syntactical interface.

• Web services with in the process provide no information

for semantic based editing and modeling of composition.

One thing to note at this point is that we have

provided two example scenarios for modeling business

processes as Web services compositions. For the first

scenario we modeled a BPEL process in MS BizTalk

Server (BPEL file of the process is available with tool

download). In remaining paper we use this BPEL process

to provide some code samples of mapping specifications.

Till the end of Section 3 the whole BPEL process is

mapped to OWL-S service. Then we use this mapped

OWL-S service to answer the problem questions (i.e. to

expose semantically enriched interface of the process as

SWS and to compose Web services for the problem

Scenario 2 on the basis of matching semantics rather than

on the basis of their syntactical information).

3 Mapping Specifications

In this section we describe mapping specifications that

can be used to translate BPEL process descriptions to

OWL-S service descriptions. Since, OWL-S is suite of

OWL ontologies (i.e. Profile, Process Model and

Grounding ontologies) therefore, we describe mapping of

BPEL process to OWL-S at three levels (i.e. mapping of

BPEL process model to OWL-S Profile, Process Model

and Grounding ontologies). Table 1 summarizes the

specifications for mapping BPEL process to OWL-S.

Mapping specifications describe from abstract level to

components and activities level translation of BPEL

process to OWL-S service. We have also highlighted some

Figure 2 Sequence of services in the process according to second scenario

Table 1 Summary of BPEL4WS to OWL-S mapping specifications

Note: No equivalent control construct (CC) in OWL-S is available for

direct mapping.

areas where direct mapping is not possible or needs some

additional work to be done from the end user.

The Algorithm 1 provides a very abstract level

description of the recursive algorithm used for extracting

OWL-S suite from BPEL process model. It is used to

traverse through BPEL process activities as long as these

activities come to an end. An important thing to note is that

when an activity is not an input/output (I/O) primitive

activity then it is mapped to perform CC (as described in

Lines 13 and 33 of Algorithm 1) to perform the relevant

atomic process. In next section we describe in detail about

the extraction of Process Model ontology from BPEL

process model.

3.1 Mapping to the OWL-S Process Model Ontology

In this section we describe how a BPEL process

model is mapped to OWL-S Process Model ontology with

defined control and data flow. The Process Model mapping

specifications describe about how BPEL primitive and

structured activities, condition statements, input/output

data passing between different activities, variables etc. are

mapped to OWL-S relevant control constructs (CCs),

SWRL expressions and parameters respectively. We also

provide some code examples of mapping BPEL activities

to OWL-S CCs. Now we describe step by step mapping of

BPEL process components to OWL-S CCs.

3.1.1 BPEL Process to OWL-S Composite Process

BPEL process model is composition of multiple Web

services with defined control and data flow between

composed services. A BPEL process model is mapped to an

OWL-S composite process that is a semantic based

composition of multiple atomic and composite processes.

The control flow and data flow between different Web

Journal of Internet Technology Volume 8 (2007) No.4

436

services operations within a BPEL process model is

mapped to control flow and data flow between process

components of an OWL-S composite service.

3.1.2 Web Service Operation to OWL-S Atomic Process

We discussed before that a BPEL process is

composition of Web services operations that can be

performed in a single step. Since, small tasks with in a

BPEL process are performed by executing Web services

operations therefore, a successful and useful mapping of

BPEL process model to OWL-S is intimately dependent on

translation of each Web service operation involved within a

BPEL process to an OWL-S atomic process. As much as

we know, till now there has no effort been done which sup-

Algorithm 1 Abstract level definition of mapping algorithm

ports the mapping of a BPEL process to OWL-S and

translates Web services operations within a BPEL process

to OWL-S atomic processes. Each Web service operation

that is mapped to OWL-S atomic process is stored in a

separate OWL file. Since, our sample Translator and

Dictionary process consists of two Web services operations

(i.e. getMeaning and getTranslation operations) therefore,

these two Web services operations are mapped to two

atomic processes (i.e. getMeaningProcess and

getTranslationProcess) and stored in separate OWL files

(i.e. getMeaning.owl and getTranslation.owl). We can also

execute these atomic processes by using some execution

engines (e.g. OWL-S API) or by importing and executing

them in SWS development tool (e.g. Protégé [5] (OWL-S

Editor [4])).

3.1.3 Primitive Activity to Perform Control Construct

In above section we have discussed that a Web service

operation performed by a primitive activity is mapped to an

OWL-S atomic process. The primitive activity that

performs Web service operation is mapped to OWL-S

Perform CC to perform that atomic process within mapped

OWL-S service. For example, consider the primitive

activity (<invoke>) that is used to perform a Web service

operation getTranslation. The primitive activity is mapped

to Perform CC to perform the process

getTranslationProcess (as shown in sample code below),

where getTranslationProcess is atomic process created in

previous section (i.e. Section 3.1.2) and stored in

getTranslation.owl file.

3.1.4 Structured Activity to OWL-S Control Construct

BPEL structured activities are used to define control

flow between different child activities. OWL-S provides a

number of CCs (e.g. Sequence, Split etc.) for defining

control flow between sub processes. Table 1 summarizes

mapping of BPEL structured activities to OWL-S CCs on

the basis of their matching behavior. As sample of mapping

these activities we describe the translation of BPEL

structured activity (i.e. switch activity) to relevant OWL-S

CC (i.e. sequence of If-Then-Else CCs), because mapping

of switch activity is a little bit tricky.

A switch activity is used to describe the conditional

behavior and consists of a list of one or more conditional

branches defined by using case elements. A case element

has a condition attribute to define its condition and can

have an optional otherwise branch that is executed if the

case condition becomes false. The switch activity is

mapped to Sequence CC of OWL-S specifications and each

case element listed under switch activity is mapped to

Bridging the Semantic Gap Between Business Processes and Semantic Web Services

437

If-Then-Else CC. The condition part of each case element

is translated to SWRL expression and otherwise part of

case element is mapped to else part of If-Then-Else CC. We

can summarize the mapping of switch activity with a list of

case elements as a sequence (Sequence) of If-Then-Else

CCs mapped with optional else part. Let us consider

following switch activity example:

Sample code of mapped switch activity in OWL-S is as

under:

Example. 1 BPEL Switch activity mapped to OWL-S

Sequence of If-Then-Else CC and condition statement

translated to SWRL expression (In all remaining examples

‘&bpel4ws2owls2, ‘&dummyURI3’ are dummy URIs that

are used by mapping tool).

In Example 1, we have discussed a very simple

conditional scenario in which switch activity involves

single case element that is mapped to If-Then-Else CC. If a

switch activity has multiple case elements, which may have

optional otherwise branches, then Algorithm 2 is used to

traverse through the list of case elements and to map each

case element to If-Then-Else CC with in a Sequence CC.

2 http://www.BPEL2OWLS.org/ChangeTestURI.owl
3 http://examples.org/DummyURI.owl

Conditions are an important part of BPEL activities (e.g.

switch, while etc.) and OWL-S CCs (e.g. If-Then-Else,

Repeat-While etc.). Without mapping condition statements,

only mapping of BPEL activities to OWL-S CCs that

depend on conditions, is not useful. Consequently

condition statements of BPEL activities are translated to

SWRL expressions that are supported by OWL-S

specifications. Mapping condition statements to SWRL

expressions support all conditional operators (e.g. $=, !=, <,

>, <=, >=$ etc.). Example 1, Lines 3-24 show a mapped

SWRL expression of If-Then-Else CC.

3.1.5 Message Assignment to Data Flow

We can discuss the mapping of data flow at two levels:

1) defining inputs and outputs of a composite process 2)

defining data flow to pass messages between process

components (i.e. sub processes) within composite process.

To understand the data flow definition at first level we

consider our sample Translator and Dictionary process in

which receive activity receives a message from the outer

world to start a process. Such a message that initiates a

process is defined as input message of composite process

within Process Model ontology of mapped OWL-S service.

In remaining process this message is referred as a message

that belongs to the process TheParentPerform to pass this

message as input of sub processes. Similarly such

situations are also possible in which the output of a sub

process becomes the output of the composite process. In

such cases output of sub process is also defined as output

of the process TheParentPerform.

As an example consider a receive activity Translator

and Dictionary process which receives a message to start

the process. The definition of message (Input_Message)

received by receive activity is given in relevant WSDL file

(as shown in sample code below).

Algorithm 2 Algorithm to traverse through Switch activity and its case

elements and to map them to relevant OWL-S CC

Journal of Internet Technology Volume 8 (2007) No.4

438

An important thing that need to be noted is that above

message definition is based only on syntax and provides no

semantic information that can be used by computer agents

for the purpose of dynamic and automated discovery,

invocation and composition. When such messages are

mapped to OWL-S, they are annotated with domain

ontologies to provide semantics for computer agents to

reason about them (we discuss these issues in detail in

Section 3.2). However, above message is used to define

data flow as input of composite process (as shown below).

This input message of the composite process can be

passed as input of sub processes (atomic or composite

processes) within Process Model ontology. For example, in

our mapped OWL-S service, getTranslation1 is an atomic

process within mapped composite process. The sample

code below shows that input parameter of composite

process (i.e. inputLang) can be passed as input

(inputLanguage) of the sub atomic process

(getTranslation1).

We have also discussed that within a BPEL process

model output of one Web service operation can be used as

input of the next Web service operation. During the

mapping of a BPEL process to OWL-S service, passing

messages between sub processes within a composite

process is addressed by using the Binding class.

3.1.6 Variables to Local Parameters

Like traditional programming languages, we can also

declare variables in a BPEL process to store and share data

between different activities within a process. Such

variables within a BPEL process are mapped to local

variables (LocalVariable) in OWL-S that can be used to

manipulate and share data between sub atomic and

composite processes.

In this section we have discussed the translation of

BPEL process model to OWL-S Process Model ontology.

Translation of some of BPEL activities to OWL-S CCs has

been described with their syntactical examples to describe

mapping aspects with respect to their language

specifications. The mapped Process Model ontology can be

used to further edit and model more complex service in a

semantic environment (as discussed in Section 5 to

evaluate our approach).

3.2 Mapping to the OWL-S Profile Ontology

Profile ontology is used to describe semantically

enriched information about capabilities of a BPEL process

when it is mapped to OWL-S SWS. Semantically enriched

information about capabilities of mapped process model is

described as 1) inputs required by the service 2) outputs

generated by the service 3) pre-conditions required to use a

service 4) effects that service produces in surrounding

world after its execution. Annotating these input/output

parameters, pre-conditions and effects with domain

ontologies defined in separate owl files provide their

semantics. Since, BPEL process model provides no

semantic information about a process therefore, Profile

ontology parameters of mapped OWL-S service are

automatically annotated by mapping tool with dummy

ontological concepts (i.e. URIs). Since, semantic

information about service capabilities can vary from user

to user therefore, it is not possible to judge the user require-

ments automatically, generate domain ontologies according

Figure 3 Annotating Profile ontology with domain ontology concepts

Bridging the Semantic Gap Between Business Processes and Semantic Web Services

439

to those requirements and annotate Profile ontology

parameters with these ontological concepts. Maximum

process of generating Profile ontology from BPEL process

is performed automatically by mapping tool but end user

can provide semantically enriched information about

capabilities of mapped OWL-S service by annotating

input/output parameters of Profile ontology with their

required domain ontologies (as shown in Figure 3).

3.2.1 Extracting the Profile Ontology

Activities in a BPEL process can have dual behavior

and mapping of these activities depends on the behavior

that a primitive activity plays in a process. For example, in

a BPEL process, primitive activities can have dual behavior

i.e. they can be used to 1) perform a Web service operation

2) interact with the outer world (i.e. to create interface of a

BPEL process model). Mapping of primitive activities that

are used to perform Web services operations with in a

BPEL process has been discussed in Sections 3.1.2 and

3.1.3. Here, we are concerned with primitive activities that

can be used to create interface of a BPEL process model. A

BPEL process can have one or more primitive activities (i.e.

receive, invoke and reply activities) that can be used to

interact with the outer world. Such activities are declared

as input/output (I/O) activities during mapping process.

Example. 2 An example of mapped Profile ontology.

Message parts of these I/O activities messages are used to

create input and output parameters of Profile ontology. For

example, if a process has a receive activity which receives

a message from user to start a process then this activity is

declared as an I/O activity and message parts of the

message received by this activity are used to create input

parameters of resulting Profile ontology.

As an example, consider a (<receive>) activity and its

message that has three parts (i.e. inputStr, inputLang and

outputLang, defined in BPEL's corresponding WSDL file).

These message parts are used to create input parameters of

resulting Profile ontology (as shown in Example 2).

A reply activity can be used to send a message to the

outer world in response to a receive activity. If a receive

activity has corresponding reply activity then message parts

of the message of such reply activity are used to create

output parameters of mapped Profile ontology. It is also

possible that a receive activity do not has corresponding

reply activity (as you can see in some example BPEL

processes available with tool download) and BPEL process

uses invoke activity to send output message to the outer

world. In this case message parts of the message of invoke

activity are used to create output parameters of Profile

ontology of mapped OWL-S service.

Another prestigious issue that we think is important to

highlight is that mapping specifications support to extract

one Profile ontology from a BPEL process model. It means

that if a BPEL process has multiple activities that act as

interfaces of BPEL process then message parts of messages

of only two primitive activities are used to create input and

output parameters of Profile ontology of mapped OWL-S

service. Even though OWL-S specifications support to

create multiple Profile ontologies for one Process Model

ontology but automatic mapping from BPEL process model

to OWL-S suite extracts one Profile ontology for one

Process Model ontology. End users can also define

multiple Profile ontologies for one Process Model ontology

to provide different meaning of same service.

3.3 Mapping to the OWL-S Grounding Ontology

Grounding ontology of OWL-S suite describes that

how to access a service. Access details described in

Grounding ontology include information about protocol,

transport and message formats. These details enable

Grounding to provide concrete level specifications needed

to access a service. Concrete level definition of inputs and

outputs of atomic processes in some transmittable format is

provided in Grounding ontology. For this purpose, during

the mapping process, original WSDL services are referred

in Grounding to access real implementation of atomic

services. When a Web service operation within a BPEL

process is mapped to OWL-S atomic process (during the

Journal of Internet Technology Volume 8 (2007) No.4

440

mapping process) then input and output messages of Web

service operation are defined as set of inputs and outputs in

the Grounding ontology of that atomic process. That's why

in Section 2 we have seen that input/output messages of

I/O activities are not directly used to create Profile

ontology but message parts of these messages are used as

set of input and output parameters in Profile ontology.

These input and output parameters when annotated with

domain ontologies, provide Web service semantics.

Now about types of messages and message parts:

there are two possibilities 1) the message is a complex

message of some OWL class type 2) the message is of

other usual data type (e.g. string, int etc.). In first case, in

which message is of some OWL class type, we need to

give the definition of OWL class. This definition can be

given within the same document or can be defined in

separate OWL file and can be referred in the type

parameter.

An OWL-S service Grounding is an instance of the

Grounding class which has sub class WsdlGrounding. Each

WsdlGrounding class contains a list of WsdlAtomic-

ProcessGrounding instances which refer to groundings of

atomic processes. WsdlAtomicProcessGrounding has

properties (e.g. wsdlInputMessage, wsdlInput, wsdlOutpu-

tMessage, wsdlOutput etc.). A wsdlInputMessage and

wsdlOutputMessage objects contain mapping pairs for

message part of WSDL input/output messages and is

presented by using an instance of WsdlInputMessageMap.

If a message part is of some complex type (e.g. some OWL

class) then XSL Transformation (XSLT) property gives an

XSLT script that generates message parts from an instance

of the atomic process. As an example consider grounding

(as shown in sample code below) of mapped OWL-S

service.

The above sample code gives an example of

grounding of mapped composite service (i.e. TestService),

where getTranslationAtomicProcessGrounding and

getMeaningAtomicProcessGrounding are groundinges of

two atomic processes that are sub processes within mapped

composite process. The sample ontology shown below

gives an example of Grounding ontology of the

getTranslation atomic process.

4 Implementation of the Mapping Tool

We have developed a tool (i.e. BPEL4WS 2 OWL-S

Mapping Tool) that can be used to translate existing BPEL

processes to OWL-S services. The BPEL4WS 2 OWL-S

Mapping Tool is an open source project and has hundreds

of download since the time it has been uploaded to open

source project directory (i.e. sourceforge.net).

4.1 Architecture

The overall architecture of the BPEL4WS 2 OWL-S

Mapping Tool consists of three components (i.e. WSDL

Parser, BPEL Parser and OWL-S Mapper) as shown in

Figure 4. As, it is clear from name that the WSDL Parser

parses each WSDL file with in mapping project and creates

their object view. An important feature of the WSDL Parser

Figure 4 Architecture of the mapping tool

Bridging the Semantic Gap Between Business Processes and Semantic Web Services

441

is that it extracts information about operations supported

by Web services and sends this information to the OWL-S

Mapper which maps each Web service operation to OWL-S

atomic process. The OWL-S Mapper writes the generated

OWL-S atomic process in a separate OWL file and saves it

in atomic processes directory of the mapping project.

The BPEL Parser traverse through a BPEL file and

creates object view of process activities. It parses primitive

activities and sends information about these activities to

OWL-S Mapper. Before sending information to the

OWL-S Mapper, the BPEL parser declares either a

primitive activity is an I/O activity or not (Section 4.2

describes in detail that how an activity is declared and

mapped as an I/O activity). If a primitive activity is

declared as an I/O activity then the OWL-S Mapper uses

message parts of the message of this activity to create

input/output parameters of composite process that

ultimately are used to create the Profile ontology

parameters. If a primitive activity is not an I/O activity then

the OWL-S Mapper maps this activity to Perform CC to

perform relevant atomic process. Also, the BPEL Parser

parses structured activities in defined control flow of input

BPEL process and sends information about these activities

to the OWL-S Mapper. The OWL-S Mapper translates

them to relevant CCs to define control flow of mapped

OWL-S composite service. If a BPEL parser comes to

some conditional structured activity then it simply sends

condition string to the OWL-S Mapper that creates

corresponding SWRL expression (as explained in Section

3.1.4).

The OWL-S Mapper is actually responsible for

writing resulting OWL-S service according to defined

mapping specifications. It uses OWL-S API [12] developed

by mindswap lab to write resulting OWL-S composite

service. OWL-S API is set of APIs that can be used to read,

write and execute OWL-S services. Since, OWL-S API uses

Figure 5 Overview of the mapping tool

a third party reasoner (e.g. jena reasoner) to reason the

mapped OWL-S ontology therefore, our tool also uses jena

reasoner (as default reasoner) for such reasoning purposes.

4.2 User Interface

The BPEL4WS 2 OWL-S Mapping Tool provides a

very easy to use interface which consists of four major

parts (i.e. Project Explorer, Object Explorer, Content

Window and Output Window) and a Toolbar and Menu bar

(as shown in Figure 5).

The Project Explorer can be used to see the input and

output files of a mapping project. The Object Explorer

provides object view of input BPEL and WSDL files. The

Content window can be used to see contents of any of the

input/output files. User can simply select a file in the

Project Explorer to see its contents in the Content Window.

Output of different actions performed (e.g. Validate, Build

and Map) can be seen in the Output Window.

5 Evaluation

In Section 2, we defined two problem scenarios (as

show in Figures 1 and 2). We modeled a BPEL process in

MS BizTalk Server as syntax based composition of the

Translator service and the Dictionary service to perform

the task defined in first scenario. Then we analyzed the

BPEL and OWL-S processes and their components and

defined step by step mapping of BPEL process to OWL-S

SWS. Till the end of Section 3 the whole BPEL process

was mapped to OWL-S SWS (the sample BPEL process

and mapped OWL-S composite service and atomic

processes are available with the tool download) with each

Web service operation within a BPEL process mapped to

OWL-S atomic process.

As a first step to edit the mapped OWL-S service to

perform the task discussed in the second scenario (as

shown in Figure 2), we replace dummy URIs of input and

output parameters of mapped atomic and composite

processes with domain ontologies (as discussed in Section

3.2). The annotation of input/output parameters can be

performed by opening the mapped OWL files (i.e. atomic

and composite processes) in the OWL-S Editor (even

though some compatibility issues between OWL-S Editor

and our tool still need to be addressed) or in any other

editor (e.g. Notepad). Annotating input/output parameters

helps to edit and extend the composite process by defining

data flow between sub processes on the basis of matching

semantics. The mapped OWL-S service takes inputString,

inputLang and outputLang as inputs of the service. The

first atomic process (i.e. getTranslationProcess) translates

the input string from input language (i.e. German) to output

Journal of Internet Technology Volume 8 (2007) No.4

442

language (i.e. English) and the second atomic process (i.e.

getMeaningProcess) provides the meaning of the input

word in English language. From here we start editing the

mapped service and add one more atomic process (i.e.

getTranslationProcess) within the Sequence CC of

composite process. This atomic process is used to perform

the additional task defined in second scenario (i.e. to

translate the meaning of the German word back from

English to German). For this purpose we define data flow

for this newly added atomic process. The

getTranslationProcess process takes as input inputLang (i.e.

English), outputLang (i.e. German) and inputStr (i.e. output

of the atomic process getMeaningProcess). The data flow

can be defined on the basis of matching semantics by using

the data binding between atomic processes.

In Section 1, we identified two goals that we want to

achieve from this work 1) to expose semantically enriched

interfaces of business processes 2) semantic based

composition modeling. We address both of these problems

by mapping BPEL process to OWL-S. Profile ontology of

mapped OWL-S service provides semantically enriched

interface of BPEL process that can be used for dynamic

discovery, invocation and composition of BPEL process as

OWL-S service. Mapped OWL-S service is edited and

extended on the basis of matching semantic information

rather than syntactical information to solve the problem

defined in second scenario (Figure 2).

6 Related Work

Several efforts have already been done to address

semantic limitations of process modeling languages. For

example, the work discussed in [10, 11] describes mapping

of BPEL process model to OWL-S Process Model ontology.

Another effort [9] has been done by a joint group of

researchers from University of Edinburgh and School of

Informatics to address semantic limitations of Fundamental

Business Process Modeling Language (FBPML) by

mapping it to OWL-S Process Model. The work discussed

in [10, 11] and [9] supports only the mapping of process

model to OWL-S Process Model ontology. It does not

support the mapping of Profile and Grounding ontologies.

We can summarize that different have been done to address

semantic limitations of process modeling languages by

mapping them to semantic Web service languages (e.g.

OWL-S) but none of these efforts provide expressive and

consistent solution. Our work is unique with these aspects

that it supports the mapping of BPEL process model to

complete OWL-S suite of ontologies.

7 Conclusion

In this paper we have presented an approach to bridge

the semantic gap between business process models and

SWSs by mapping BPEL processes to OWL-S suite of

ontologies. We have implemented our approach as a

mapping tool that can be used to map BPEL processes to

OWL-S services. Since, OWL-S is not as mature as BPEL

therefore, we have also highlighted different areas where

direct mapping is not supported. For example, in order to

implement direct mapping of BPEL activities (e.g.

terminate, fault handling etc.) we need more consistent

specifications of OWL-S to address these issues. We have

also highlighted areas where some human user input is

required (e.g. changing parameter type by annotating

input/output parameters with domain ontologies etc.).

To this end, bridging the semantic gap between

business process modeling languages and semantic Web

services becomes more important to keep existing business

processes alive with upcoming semantic Web service

technology. Our approach will help in enabling existing

business process (i.e. BPEL processes) with semantics by

shifting them to OWL-S services. These OWL-S services

can be used for co-operation between business partners in a

dynamic and computer understandable way.

Acknowledgement

This work is partially supported by the Higher

Education Commission (HEC) of Pakistan under the

scheme "Partial Support Scholarship for PhD Studies

Abroad”.

References

[1] R. Akkiraju, J. Farell, J. Miller, M. Nagarajan, A.

Sheth, and K. Verma. Web service semantics - wsdl-s.

[online] Available http://www.w3.org/Submission/

WSDL -S/, Nov. 2005.

[2] S. Arroyo, E. Cimpian, J. Domingue, C. Feier, D.

Fensel, B. König-Ries, H. Lausen, A. Polleres, and M.

Stollberg. Web service modeling ontology primer.

[online] Available http://www.w3.org/Submission/

WSMO-primer/ , Jun 2005.

[3] D. Booth and C. K. Liu. Web services description

language (WSDL) version 2.0 part 0: Primer. [online]

Available http://www.w3.org/TR/2006/CR-wsdl20-

primer- 20060327, Mar. 2006.

[4] D. Elenius, G. Denker, D. Martin, F. Gilham, J. Khouri,

S. Sadaati, and R. Senanayake. The OWL-S editor - A

development tool for semantic web services. In 2nd

Bridging the Semantic Gap Between Business Processes and Semantic Web Services

443

European Semantic Web Conference, Vol. 3532, 2005,

pp. 78-92.

[5] J. H. Gennari, M. A. Musen, R. W. Fergerson, W. E.

Grosso, M. Crubezy, H. Eriksson, N. F. Noy, and S. W.

Tu. The evolution of Protégé: an environment for

knowledge -based systems development. Int. Journal

of Human- Computer Studies, 58(1): 2003, pp.

89-1233.

[6] M. Juric, B. Mathew. P. Sarang: Business Process

Execution Language for Web Services. A Practical

Guide to Orchestrating Web Services Using

BPEL4WS. PACKT Publishing, Oct. 2004.

[7] F. Leymann. Web services fow language (wsfl 1.0).

[online] Available http://www-306.ibm.com/software/

solutions/webservices/ pdf/WSFL.pdf, May 2001.

[8] D. Martin, M. Burstein, J. Hobbs, O. Lassila, D.

McDermott, S. Mcllraith, S. Narayanan, M. Paolucci,

B. Parsia, T. Payne, E. Sirin, N. Srinivasan, and K.

Sycara. Owl-s: Semantic markup for web services.

[online] Available http://www.ai.sri.com/daml/services

/owl-s/1.2/ overview/, Mar. 2006.

[9] G. Nadarajan and Y.-H. Chen-Burger. Translating

fundamental business process modelling language to

the web services ontology through lightweight

mapping. Technical Report EDIINFRR0942, The

University of Edinburgh, 2007.

[10] J. Shen, G. Grossmann, Y. Yang, M. Stumptner, M.

Schrefl, and T. Reiter. Analysis of business process

integration in web service context. In FGCS: The Int.

Journal of Grid Computing: Theory, Models and

Applications, number ISSN:0167-739X. Elsevier

Publishers, May 2006.

[11] J. Shen, Y. Yang, C. Wan, and C. Zhu. From

BPEL4WS to OWL-S: Integrating E-business process

descriptions. In IEEE Computer Society, 2005, pp.

181-190.

[12] E. Sirin. Owl-s api. [online] Available http://www.

mindswap.org/2004/owl-s/api/, Aug. 2001.

[13] S. Thatte. XLANG web services for business process

design. [online] Available http://xml.coverpages.org/

XLANG-C-200106.html, 2001.

Biographies

Muhammad Ahtisham Aslam is

PhD student and research assistant at

Business Information Systems

(Betriebliche Informationssysteme)

research group at University of

Leipzig, Germany. He has written

several scientific articles. His research

interests include Business Process Modeling, Semantic

Web and Semantic Web Services.

Sören Auer is postdoctoral researcher at

the depatment of Business Infomation

Systems at Universität Leipzig, Germany

and the database group at University of

Pennsylvania, USA. His research

interests include Knowledge

Representation and Management, in particular agile,

light-weight methodologies and social semantic

collaboration.

Jun Shen is lecturer in IT at School of

Information Systems and Technology,

University of Wollongong, Australia. He

has been a research fellow in Swinburne

University of Technology, Melbourne and

University of South Australia. His

research interests include Semantic

Web,Web Services, Knowledge Grid and Mobile Services.

Klaus-Peter Fähnrich is professor of

computer science and chair of Business

Information Systems research group at

Institute of Computer Science, University

of Leipzig, Germany. His main areas of

research and teaching are Business

Information Systems, Software Engineer-

ing and Management, E-Business and Services Science.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

