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Abstract. An exposition of an earlier seminal paper on the linear analysis 

of synchronous switching networks is presented. This analysis, based on 

the use of the finite or Galois field GF(2), resembles the linear analysis of 

continuous systems and has important applications in genetics and 

biochemistry. A synchronous switching network is represented by a 

function matrix or by a transition matrix, which are related by a similarity 

transformation in terms of a state matrix. Our use of a novel recursive 

ordering for the keys or indices of these matrices reveals several new and 

interesting features and properties. The state matrix is observed to depend 

not on the particular network but merely on its number of nodes, and is 

further given a novel interpretation via the modern concept of 

subsumption of a logical product by another. This reveals a recursive 

structure of the state matrix and leads to a proof that it is involutory (self-

inverse). The autonomous behavior of synchronous switching networks is 

studied via the characteristic equations and eigenvectors of the 

aforementioned matrices. In general, the classical ideas are enriched with 

modern concepts and terminology, supported with correct proofs, and 

clarified with detailed tutorial examples.  

1. Introduction 

Two of the most complex biological systems of current interest are the 

cellular genetic system and the intracellular biochemical signal 

transduction networks of the central nervous system. These systems are 

too complex to allow exact or nearly exact analysis. Kauffman 
[1]

 and 

McCulloch and Pitts 
[2]

 proposed studying these respective systems using 

43
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a synchronous switching network as an approximating model. In, fact a 

synchronous switching network is the simplest possible conceptual 

model that mimics or captures the essential features of the original 

systems. 

A synchronous switching network is composed of a set of 

elements, corresponding to either genes or neurons, which have two 

states, on (1) and off (0). Time is assumed to be synchronized, i.e., 

quantized in terms of a basic delay, corresponding to either the transport 

delay or a synaptic delay. At each instant of time, each element is in one 

of its two states, and the state of the element in the next instant of time is 

a function of the present states of the elements and the states of the set of 

external inputs. 

In a seminal paper, Cull 
[3]

, presented a study of synchronous 

switching networks using the mathematical concept of the finite or 

Galois field GF(2) 
[4,5]

. He preferred the finite-field approach to the 

switching-algebra or Boolean-algebra approach 
[6,7]

, so as to emphasize 

the strong analogy between the linear analysis of (discrete) synchronous 

switching networks and that of continuous systems 
[8]

. Unfortunately, this 

seminal work of Cull 
[3]

 has gone almost unnoticed in the literature, and 

has received only few citations by authors who apparently were unable to 

make any real use of it 
[9,10]

. This is due in part to the fact that it was 

written in a very obscure and outdated language, and in part to the fact 

that it appeared in a little known periodical that publishes essentially in 

German and not in English. With a revival of work on synchronous 

Boolean networks and their applications to biological and biochemical 

systems 
[9-11]

, the need for accessing, comprehending, updating, and 

extending Cull’s work is much felt. Therefore, we find it worthwhile to 

present this paper in which we make a detailed exposition of the ideas of 

Cull 
[3]

, extend them with modern ideas and terminology, support them 

with correct proofs, supplement them with clarifying specific examples, 

and, wherever possible, relate them to the concepts of switching or 

Boolean algebra. As an offshoot of this endeavor, we propose herein a 

new ordering of the pertinent variables and their products, which serve as 

keys or indices of the system matrices. This new ordering is superior to 

the one adopted by Cull 
[3]

, as it enjoys an elegant recursive property and 

leads to several useful interpretations and features. 

The rest of this paper is organized as follows. Section 2 reviews the 

properties of functions over the simplest finite or Galois field GF(2), 

while Section 3 introduces the concepts of function matrix and transition 
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matrix. These two matrices are related by a similarity transformation, and 

each of them is a sufficient representation of the synchronous switching 

network. Our new ordering for the keys or indices of these matrices 

reveals several novel and interesting features and properties. We observe 

that the state or modal matrix, used in the transformation between the 

network-dependent function and transition matrices, is network-

independent and depends only on the number of nodes. Hence, we 

present a novel interpretation of the state matrix via the modern concept 

of subsumption of a logical product by another. This reveals a recursive 

structure of the state matrix and leads to a proof that it is involutory (self-

inverse). The state matrix is also shown to serve as the transformation 

matrix between two distinct vector representations of the network 

instantaneous state. The autonomous behavior of synchronous switching 

networks is obtained from a consideration of the characteristic equation 

(discussed in Sec. 4) and eigenvectors (discussed in Sec. 5) of either of 

the two matrices. Section 6 is devoted to some concluding remarks. This 

organization of our current paper parallels that of the original paper of 

Cull 
[3]

. However, we give due credit to Cull by citing his work 

repeatedly, and we take care to distinguish our contributions from his. A 

part of the work in Ref. [3] that is not covered herein deals with a 

criterion for invertibility of systems of switching equations. More general 

methods for solving switching and Boolean equations are given in Ref. 

[12-14]. 

2. Functions Over the Finite or Galois Field GF(2) 

Let F be a set of objects on which two operations: addition (+) and 

multiplication (represented by (*) or juxtapositioning) are defined. F is 

said to be a field if and only if  

1. F forms a commutative group under addition. The additive 

identity element is labeled “0”. 

2. F-{0} (the set F with the additive identity removed) forms a 

commutative group under multiplication. The multiplicative identity 

element is labeled “1”. 

3. Multiplication is distributed by addition: a * (b + c) = (a * b) + (a * c). 

A field can also be defined as a commutative ring with identity in 

which every element has a multiplicative inverse 
[15]

. Well known 

examples of finite fields include the real field (field of real numbers) and 

the complex field (field of complex numbers).  
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If a field has a finite order (number of elements) q, then its order 

completely specifies it, and it is called the Galois field GF(q). Thus two 

finite fields of the same size are isomorphic, i.e., they are always 

identical up to the labeling of their elements, regardless of how the fields 

are constructed. In GF(q), there are q
qn

 functions or polynomials of n 

variables. A finite field GF(q) exists iff q = p
r
, where p is a prime integer 

and r is a positive integer. Finite fields are of central importance since 

any function in n variables over GF(p
r
) can be represented by r functions 

in nr variables over GF(p). Cull 
[3]

 restricted his work to GF(2), but he 

claimed that his results can carry over to any GF(p) and thus to any 

GF(p
r
). 

 In direct analogy with the use of the real or complex fields in 

describing and analyzing continuous systems, Cull 
[3]

 uses the simplest 

finite field GF(2) in describing and analyzing systems made up of 

switching elements. The structure of GF(2), also called the binary field 

or the mod 2 field, is remarkably simple. The field has only two 

elements: the additive identity (0) and the multiplicative identity (1). The 

field operations are defined by the following axioms: 

0 + 0 = 1 + 1 = 0 

1 + 0 = 0 + 1 = 1 

0*0 = 0*1 = 1*0 = 0 

1*1 = 1 

Note that the addition (+) operation is a modulo 2 operation that 

resembles the exclusive-OR operation (⊕ ) in switching algebra. Any 

function of n variables over GF(2) is a polynomial of 2
n
 terms (called a 

Taylor or a Reed-Muller polynomial 
[4,5,16]

), and hence can be 

represented by a vector of length 2
n
, whose elements are the binary 

coefficients of the 2
n
 terms in the polynomial. Note that the 2

n
 terms are 

the constant term (1), n terms representing each of the n variables, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

2

n
 

terms representing products of variables taken 2 at a time, ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

3

n
 terms 

representing products of variables taken 3 at a time, and so on, ending 

with a single term for the product of all variables. Therefore, the total 

number of terms is expressed by the binomial identity 
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k k

n
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                                                                                    (1) 

A vector of these 2
n
 terms, arranged in some agreed-upon order, 

constitutes a basis for all functions of n variables over GF(2), in the sense 

that any of these functions equals the (scalar) dot product of the vector of 

binary coefficients representing it with the aforementioned basis vector. 

Cull 
[3]

 proposed the use of a lexicographic order for the basis vector of 

the form 

[1  x1  x2   x3   …   xn   x1x2  x1x3  …  x1xn   x2x3  …  xn-1xn   x1x2x3   …   xn-

2xn-1xn   …   x1x2x3…xn]. 

In fact, he replaced the leading 1 with a 0; an oversight since 0 is 

not a product at all. We propose, however an order of the form 

Bn = [ 1  x1  x2  x1 x2   x3   x1x3  x2x3  x1x2x3 … x1x2x3 … xn]
T
                   (2) 

We call the above order of the of the basis vector a recursive order, since 

our column vector Bn can be defined by the recursive relation  

Bn= ⎥
⎦

⎤
⎢
⎣

⎡

−

−

nn

n

x1

1

B

B
                                                                            (3) 

together with the boundary condition  

B0= [1]                                                                                         (4)                     

A restatement of the recursive relation (3) is that none of the logical 

products (that are elements of Bn) is succeeded by products that are 

subsumed by it. We recall that a product subsumes another if the set of 

literals of the former is a superset of that of the latter 
[6]

.  

 For example, the function of two variables x1+x1x2 is represented 

by the vector [0 1 0 1]. Since the function has no constant term, a zero 

appears as the first component of this vector. The second component of 

the vector is 1 since the coefficient of x1 is 1. The third component is 0 

since the coefficient of x2 is 0, and the fourth component is 1 since the 

coefficient of x1x2 is 1. The four possible values of the two variables x1 

and x2 can be represented by the four vectors representing the pertinent 

instances of B2 = [1  x1  x2  x1x2]: [1 0 0 0], [1 1 0 0], [1 0 1 0], and [1 1 1 

1]. The first vector represents the case x1=x2=0; the second vector 

represents x1=1, x2=0; the third vector represents x1 = 0, x2 = 1; and the 

fourth vector represents x1 = x2 = 1. Taking the scalar product of each of 

these vectors with the vector representing the function, we see that the 



A. M. A. Rushdi and S. O. S. Al-Otaibi 48 

function only equals 1 for the second vector; that is, when x1=1 and x2=0. 

3. Transition Matrix and Function Matrix 

A synchronous switching network is a set of elements, each of which can 

(at a given instant of time) be in one of two states, 0 or 1. Time is 

quantized and the state of an element in the next instant of time is a 

binary function of the present states of the elements. It will be convenient 

to call the set of elements that are in the 1 state the state of the network, 

and represent this state by a product of subscripted x's where the 

subscripts are the numbers of the elements that are in the 1 state. If there 

are n elements in the network, there will be 2
n
 states of the network. For 

example, if n = 5, there are 2
5 

= 32 states. The product 1 indicates the 

states in which all 5 elements are in state 0, while the product x1x3x5 

depicts the state in which elements 1, 3, and 5 are in state 1 while 

elements 2 and 4 are in state 0. The general correspondence between 

network state labels and element states for n = 3 is shown in Table 1.   

Table 1. Correspondence between Network State Labels and Element States for n=3. 

State label 1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

Value of the three tuple 

x3 x2 x1 
000 001 010 011 100 101 110 111 

Note that in Table 1, we deliberately reversed the order of the three 

tuple (x1, x2, x3). This way, our proposed ordering of the products 

corresponds exactly to a binary ordering of the integer (x3 x2 x1)10. No 

similar interpretation could be given to the original product ordering used 

by Cull 
[3]

. 

The network state at time t can therefore be represented by a vector 

Yt, which is a binary column vector whose elements are all 0 except one 

1 element. This particular one 1 element corresponds to the position 

where the product depicting the network state occurs in the basis vector 

Bn. An alternative vector representation of the network state is vector Xt, 

which equals the basis vector Bn evaluated at the network state at instant 

t. Hence, Xt is the vector of length 2
n
 that has l's in the positions 

representing any of the products of the elements of the synchronous 

switching network that are in state 1. In the above example of a network 

of 5 elements with elements 1, 3, and 5 in state 1 and elements 2 and 4 in 

state 0 at time t, the vector Yt has a single 1 at the position of product 

x1x3x5, while the vector Xt has 1’s at the positions of all the products 

subsumed by that product, namely products 1, x1, x3, x1x3, x5, x1x5, x3x5 

and x1x3x5.   
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Since the network is in only one state at a time and proceeds to its 

next state in the next instant of time, the behavior of the network is 

usually represented by a state transition diagram 
[6,16]

. Cull 
[3]

 proposed 

the use of a transition matrix T such that: 

Yt+1=TYt                                                                                       (5)                    

The transition matrix T is a 2
n
×2

n
 matrix having exactly one 1 in each 

column and 0 elements otherwise. Its name is reminiscent of matrices 

used in the analysis of Markov chains 
[17]

.  

Cull 
[3]

 also defined a function matrix A as the 2
n
×2

n
 matrix that 

has as its rows the vector representations of the 2
n
 products of the n 

functions computed by the elements of a synchronous switching network. 

Hence, the function matrix A relates two consecutive instances of the 

vector X as: 

Xt+1=AXt                                                                                                                                  (6)                             

To see the connection between the transition matrix T and the 

function matrix A, Cull 
[3]

 introduced a state matrix P as a 2
n
×2

n
 upper 

triangular matrix, the columns of which are the X vectors representing all 

the 2
n
 possible states of the network. The i

th
 row of P has a 1 in each column 

that represents a state in which the i
th
 product of the variables has the value 

1. Considering the i
th
 row of P as the vector representation of a binary 

function, we see that it represents a function in which the i
th
 product of the 

variables may be factored out, leaving the sum of all the possible products of 

the remaining variables (see Example 1 below). The sum of all the possible 

products of a set of variables equals 1 if all the variables equal 0, and equals 

0 otherwise. For example, in the case of n = 2, the sum (1+x1+x2+x1x2) 

equals 1 when x1 = x2 = 0 and is 0 otherwise. Thus the i
th
 row of P represents 

the function that equals 1 if and only if the i
th
 product of the variables equals 

1 and the remaining variables equal 0. 

Cull 
[3]

 claimed, without proof, that the matrix P is its own inverse 

(or in modern terminology an involutory matrix 
[18]

), i.e.,  

P
-1

=P                                                                                            (7a)                    

P
2
=PP=I                                                                                      (7b) 

where I is the identity matrix of 2
n
 elements. We will provide a formal 

proof of (7) shortly. The matrix AP formed by pre-multiplying the state 

matrix P by the function matrix A is made up of the columns of  P, some 

of which may be repeated, the i
th

 column representing the state to which 

the i
th

 state goes. The matrix PT formed by post-multiplying the state 
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matrix P by the transition matrix T is also composed of the columns of P 

with possible repetitions so that the i
th

 column represents the state to 

which the i
th

 states goes. Thus: 

A P = P T                                                                                        (8) 

We will present a formal proof of (8) later. We pre-multiply (8) by P
-1

 to 

obtain 

P
-1

A P = P A P = T                                                                       (9)   

and post-multiply (8) by P
-1

 to obtain   

A = P T P
-1

 = P T P                                                                    (10) 

This means that we may obtain the functional representation from the 

transitional representation and vice- versa. In linear algebra terminology, 

we say that the function matrix A and transition matrix T are similar 
[14]

, 

with the similarity transformation between them being achieved by a 

self-inverse modal matrix P. 

 We contribute a novel observation that the state or modal matrix P 

is independent of the particular network used. It is unique for a given 

number of nodes n in the network, and therefore we will label it Pn when 

the need arises. We propose a straightforward technique for constructing 

P using the modern terminology of switching theory as presented in the 

standard text of Muroga 
[6]

. Let Tj be the product labeling column j of P 

and Ti be the product labeling row i of P. Then we construct P by using 

the rule: 

1,   if  Tj  subsumes  Ti                                                                        (11a) 
Pij =        {

0,   otherwise                                                                                          (11b) 

Note that a product Tj subsumes another Ti if the set of literals Sj of 

Tj contains (is a superset of) the set of the literals Si of Ti. Eq.s (11) state 

that Pn records whether or not the elements of its column basis Bn 

subsume those of its row basis, which is also Bn. The general nature of 

the state matrix P is shown in Table 2. 

Furthermore, we deduce that the matrix P has the following 

properties: 

• All columns (except the first) have even numbers of 1’s. 

This is because the number of subsets of a set S is 2
|S|

 , where |s| is the 

cardinality of S. 
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  Table 2. On the General Nature of the State Matrix P. 

 

   

 Top row of all 1’s 

(Product 1 is subsumed by all products) 

  

            

  1 1 1 1 1 1 1 1  

  1      1  

   1     1  

    1    1  

     1   1  

   0   1  1  

       1 1  

Lower triangular 

part of all 0’s 

(products are 

arranged so that 

no preceding 

product subsumes 

a succeeding one) 

        1  

Last column of 

all 1’s 

(product x1x2x3  

subsumes all 

products ) 

            

  Diagonal of  all 1’s  

( Every product subsumes itself ) 

  

For |S| > 0 , 2
|S|

 is even, and for |S| = 0 (S=Φ) , 2
|S|

 =1=odd. Since the set 

of literals of the product 1 is Φ, it is the only set that has an odd number 

of subsets (namely 1). 

• All rows (except the last) also have even numbers of 1’s. 

This is because every set within the given universe has an even number 

of supersets, except the set corresponding to the product x1x2x3 (the 

universe in this case) which is a superset of only itself.   

Table 3 shows the gradual evolution of matrix Pn for n = 0, 1, 2, and 3 

(2
n 

=1, 2, 4, and 8). Note that every matrix contains all its predecessors as 

submatrices, thanks to our new proposed ordering of products. In fact, we 

can now give the following recursive definition of P: 

P0 = [1]                                                                                      (12a) 

Pn = ⎥
⎦

⎤
⎢
⎣

⎡

−−

−−

11

11

nn

nn

P0

PP
                                                                    (12b) 

where 0n-1 is the zero matrix of dimensions 2
n-1

×2
n-1

. Note that Pn-1 

appears three times in the partitioning of Pn in (12b). Its first appearance 

in the top left partition is where it signifies the subsumption of its row 

basis Bn-1 by its column basis Bn-1. In the top right and bottom right 

partitions, we need to represent the subsumptions of row bases Bn-1 and 
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Bn-1xn by column basis Bn-1xn. Both subsumptions are again represented 

by Pn-1. We can now give a formal proof via mathematical induction of 

the fact that Pn is involutory (self-inverse). We prove 

(a) the non-recursive (boundary or limiting) case 

P
0

2
 = [1] [1] = [1] = I0                                                                                                    (13) 

(b) { P
n-1

2
 = In-1 } implies { P

n

2
  = In } since  

P
n

2
  = Pn Pn = ⎥

⎦

⎤
⎢
⎣

⎡

−−

−−

1n1n

1n1

P0

PPn

⎥
⎦

⎤
⎢
⎣

⎡

−−

−−

1n1n

1n1

P0

PPn

 

                   = ⎥
⎦

⎤
⎢
⎣

⎡

++

++

−

−−−

−−

−

−

P000

PP0P

2

1n1n1n1n

2

1n

2

1n1n
2

1n

 

                   = ⎥
⎦

⎤
⎢
⎣

⎡

+

+

−−−

−−−

1n1n1n

1n1n1n

I00

00I
 =  ⎥

⎦

⎤
⎢
⎣

⎡

−−

−−

1n1n

1n1n

I0

0I
                                

                   =  In                                                                                    (14) 

where In is the identity matrix of dimensions 2
n
×2

n
. The abstract concepts 

of this section are now clarified with a few detailed tutorial examples. 

Example 1 

This example was discussed earlier by Cull 
[3]

. Let us consider a 

network of 3 elements whose next states are given by: 

 f1=1+ x2 + x1x2 + x1x3 + x1x2x3                                                 (15a) 

f2=1+ x2 + x3 + x1x2 + x1x3 + x1x2x3                                          (15b) 

f3=1+ x1+ x1x2 + x1x3 + x2x3 + x1x2x3                                        (15c) 

Here, the current state of element i is called xi while its next state is 

called fi. An alternative terminology is to call the current and next states 

xit
 and xit+1 

[9,10]
. This terminology will allow us to speak of later 

instances of the element state such as xit+2
 , xit+3

 , …, etc. The above 

equations can be conveniently expressed in map form. Figure 1 shows a 

Karnauagh-map representation (actually three maps combined together) 

for the 3-tuple of next state functions f1f2f3. For convenience, the current 

value of each map cell is shown in a small corner box within the cell. 
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Table 3. The Matrix P with Associated Keys or Bases for n = 0, 1, 2, and 3 (2
n 
=1, 2, 4, and 8). 

  

P0 =   1 

 1 1 

 

   1 x1 

     

P1= 1  1 1 

 x1  0 1 

 

  Tj 1 x1 x2 x1x2 

 Ti      

P2= 1  1 1 1 1 

 x1  0 1 0 1 

 x2  0 0 1 1 

 x1x2  0 0 0 1 

 

    1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2x3 

            

 P3= 1  1 1 1 1 1 1 1 1 

  x1  0 1 0 1 0 1 0 1 

  x2  0 0 1 1 0 0 1 1 

  x1x2  0 0 0 1 1 0 0 1 

  x3  0 0 0 0 1 1 1 1 

  x1x3  0 0 0 0 0 1 0 1 

  x2x3  0 0 0 0 0 0 1 1 

  x1x2x3  0 0 0 0 0 0 0 1 

 

 

 

 

 

 

 

 

 

Fig. 1. A Karnaugh map representation for the next-state functions in (15). 

 

From Fig. 1, it becomes apparent that the system above has the 2-

cycle state diagram shown in Fig. 2, or in Fig. 3 (with an alternative state 

labeling). 

 000  010  110  100 

111 001 111 110 

 001  011  111  101 

101 010 100 011 

 

3
x

1
x

2
x  

f1 f2 f3 



A. M. A. Rushdi and S. O. S. Al-Otaibi 54 

 

Fig. 2. State diagram for example 1 with states identified by the products representing them. 

 

Fig. 3. The state diagram in Fig. 2 with states designated by the binary values of the 3-tuple x1x2x3. 

The transition matrix T is automatically derived from the state 

diagram and is shown in Table 4, wherein each state is labeled by its 

pertinent product. The first row in T has all 0's, since no state goes to state 1; 

the second row has a 1 in the last position, since state x1x2x3 goes to state x1, 

and so on. Every column in T must have one, and only one, 1, since in every 

current state there is a unique way for going to some next state. 

Table 4. The Transition Matrix T for Example 1. 

  Current 

state 
1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

 Next 

state 

 
        

 1  0 0 0 0 0 0 0 0 

 x1  0 0 0 0 0 0 0 1 

T = x2  0 0 0 0 0 0 1 0 

 x1x2  0 1 0 0 0 0 0 0 

 x3  0 0 1 0 0 0 0 0 

 x1x3  0 0 0 0 1 0 0 0 

 x2x3  0 0 0 0 0 1 0 0 

 x1x2 x3  1 0 0 1 0 0 0 0 

In addition to the three original functions, we add the empty 

product (multiplication identity) f0=1 and the products 

f1f2  = 1+ x2 + x3 + x1x2 + x2x3 + x1x2x3                                     (15d) 

f1f3  = 1+ x1 + x2+ x1x2x3                                                            (15e) 

f2f3  = 1 + x1 + x2+ x3 + x2x3 + x1x2x3                                         (15f) 

 100 110 

111 000 

010 001

      011 101 

 x1 x1 x2 

  x1 x2 x3 1 

x2 x3

      x2 x3 x1 x3 
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f1f2f3 = 1 + x1 + x2+ x3 + x1x3 + x2x3                                          (15g) 

The function matrix A is simply the matrix that has the eight 

vectors [1   f1   f2   f1f2   f3   f1f3    f2f3   f1f2f3] as its rows. Thus we can write 

A as shown in Table 5. 

  Table 5. The Function Matrix A for Example 1. 

  Current 

state 
1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

 Next 

state 

 
        

 f0  1 0 0 0 0 0 0 0 

 f1  1 0 1 1 0 1 0 1 

A = f2  1 0 1 1 1 1 0 1 

 f1f2  1 0 1 1 1 0 1 1 

 f3  1 1 0 1 0 1 1 1 

 f1f3  1 1 1 0 0 0 0 1 

 f2f3  1 1 1 0 1 0 1 1 

 f1f2 f3  1 1 1 0 1 1 1 0 

It is simple to calculate AP and PT and verify that they are equal as 

expected. 

Example 2 

This example is taken from Farrow et al. 
[10]

 and deals with the 

network shown in Fig. 4. Here the next states are given by  

 

Fig. 4. The Boolean network of Example 2 and the truth tables of its excitations. 

 f1 = x2x3                                                                                     (16a) 

f2 =  1x                                                                                        (16b) 

x1 

x3

x2
x1 f2 x2 f3 x2 x3 f1 

0 1 0 0 0 0 0 

1 0 1 1 0 1 0 

    1 0 0 

    1 1 1 

OFF ON    AND  
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f3 = x2                                                                                         (16c) 

Figure 5 shows Karnaugh-map representations for the 3-tuple of 

next state functions f1f2f3. Consequently, the system has the state diagram 

shown in Fig. 6.  

 

Fig. 5. A Karnaugh map representation for the next-state functions in (16). 

 

The transition matrix T is automatically derived from the state 

diagram and is shown in Table 6, wherein each state is labeled by its 

pertinent product. For convenience, we will henceforth adopt the 

convention of not explicitly writing the 0 entries in binary matrices such 

as T, A, and P. Instead, we will use blanks to express 0 entries. 

In addition to the three original functions, we add  f0=1 and the 

products 

f1f2   = x2x3 +  x1x2x3                                                                                                   (16d) 

f1f3   = x2x3                                                                                 (16e) 

f2f3   = x2 +  x1x2                                                                         (16f) 

f1f2f3 = x2x3 +  x1x2x3                                                                  (16g) 

 

x2 

x1x3 

x1x2 x3 

x1x2x3

x1 x2x3 1 

Fig. 6. The state diagram for example 2.

1
x

000 010 110 100

010 011 001 000 
001 011 111 101

010 111 101 000 3
x

2
x  

f1 f2 f3 
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Table 6. The Transition Matrix T for Example 2. 

  Current 

state 
1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

 Next 

state 

 
        

 1   1    1   

 x1          

T = x2  1    1    

 x1x2          

 x3     1     

 x1x3         1 

 x2x3    1      

 x1x2 x3        1  

Table 7 shows the function matrix A as the matrix that has the 

eight vectors [f0  f1  f2  f1f2  f3  f1f3  f2f3  f1f2 f3] as its rows. Again, it is 

straightforward to verify the equality of AP and PT as required by (8). 

Table 7. The Function Matrix A for Example 2. 

    1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

           

 f0  1        

 f1        1  

A = f2  1 1       

 f1f2        1 1 

 f3    1      

 f1f3        1  

 f2f3    1 1     

 f1f2 f3        1 1 

Example 3 

This example is taken from Heidel et al. 
[9]

 and deals with the 

network shown in Fig. 7. Here the next states are given by: 

 f1 = x2 ∨  x3                                                                                                                       (17a) 

f2 =  x1 ∨  x3                                                                               (17b) 

f3 =  x1 ∨  x2                                                                                                                       (17c) 
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Figure 8 shows Karnaugh-map representations for the 3-tuple of 

next state functions f1f2f3. Consequently, the system has the state diagram 

shown in Fig. 9.   

 

 

Fig. 8. A Karnaugh map representation for the next-state functions in (17). 

 

Fig. 9. The state diagram for example 3. 

 

The transition matrix T is automatically derived from the state 

diagram and is shown in Table 8, wherein each state is labeled by its 

pertinent product.  

x1 

x2 

x1x3 

x1x2x3x1x2 x3 x2x3 

1 

000 010 110 100

000 101 111 011 
001 011 111 101

110 111 111 111 3
x

1
x

2x  

x2 

x1

x3

x2 x3 f1  x1 x3 f2  x1
0 0 0  0 0 0  0

0 1 1  0 1 1  0

1 0 1  1 0 1  1

1 1 1  1 1 1  1

OR  OR  

Fig. 7. The Boolean network of Example 3 and the truth tables of its excitations. 

f1 f2 f3 
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Table 8. The Transition Matrix T for Example 3. 

  Current 

state 
1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

 Next 

state 

 
        

 1  1        

 x1          

T = x2          

 x1x2      1    

 x3          

 x1x3    1      

 x2x3   1       

 x1x2 x3     1  1 1 1 

In addition to the three original functions, we add  f0=1 and the 

products 

f1f2   = x1 x2 + x3 + x1 x2 x3                                                                                      (17d) 

f1f3   = x1 x3 + x2 + x1 x2 x3                                                          (17e) 

f2f3   = x2 x3 + x1 + x1 x2 x3                                                                                        (17f) 

f1f2f3 = x1 x2 + x1 x3 + x1 x2 x3                                                     (17g)  

Table 9 shows the function matrix A as the matrix that has the 

eight vectors [f0  f1  f2  f1f2  f3  f1f3  f2f3  f1f2f3] as its rows. Once more, 

direct multiplication verifies the validity of (8) in this case.  

  Table 9. The Function Matrix A for Example 3. 

   1 x1 x2 x1x2 x3 x1x3 x2x3 x1x2 x3 

           

 f0  1        

 f1    1  1  1  

A = f2   1   1 1   

 f1f2     1 1   1 

 f3   1 1 1     

 f1f3    1   1  1 

 f2f3   1     1 1 

 f1f2 f3     1  1 1  
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 Before closing this section, we must admit that we were intrigued 

by the fact that Cull 
[3]

 used two distict vectors Yt and Xt to represent the 

same network state at instant t without giving a relation between them. 

Recall that Yt has a single 1 element at the position where the state 

product occurs in the basis vector Bn, while Xt has 1 elements at the 

positions of products subsumed by that state product. This means that:  

Xt = P Yt                                                                                      (18)                         

and hence  

Yt = P
-1

 Xt = P Xt                                                                        (19)                         

If we substitute (18) in (6), we obtain  

P Yt+1 = A P Yt                                                                            (20)                        

Yt+1 = P
-1

 A P Yt                                                                          (21)                        

Now, we compare (21) with (5) to arrive at the similarity transformation 

(9). Likewise, we can obtain a formal proof of (10). If we pre-multiply 

(9) by P or post-multiply (10) by P, we obtain (8). 

4. Cycles and Characteristic Equations 

A state of the network Yt is called cyclic if 

Yt+m ≡  T
m

 Yt = Yt           for some m                                        (22a) 

Otherwise it is called transient when                                                                              

Yt+m ≡  T
m

 Yt ≠ Yt           for all m > 0                                      (22b) 

A set of cyclic states that map into one another are called a cycle. A state 

into which no state maps is called a first state, i.e., a first state does not 

serve as a next state for any current state, and hence the row 

corresponding to it in the transition matrix T is an all-0 row. A set of 

transient states that can be reached from a first state are called a transient 

chain. Note that a state is transient if it is a first state or it can be reached 

only from a first state or from some other transient states.  

By analogy, to characteristic polynomials of real matrices 
[8,18]

, 

Cull 
[3]

 introduced the concept of the binary characteristic polynomial of 

a binary matrix T, defined as det(T+xI) where the operations are carried 

out in the binary field. This polynomial will have (x)
k
 as a factor, where k 

is the number of transient states. This can be seen by considering the 

rows of (T+xI) corresponding to first states. Each of these rows will have 
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an (x) on the diagonal as its only non-zero entry. Expanding the 

determinant in terms of each of these rows, we obtain a factor of (x) for 

each of these rows and a reduced determinant. Each state that can be 

reached only from the eliminated first states will have in the reduced 

determinant an (x) on the diagonal as the only non-zero entry in its row. 

Expanding in terms of these rows and continuing the process we obtain 

the desired result. Having eliminated transient states, we can rearrange 

the rows and perform the same column operations so that the various 

cycles form blocks in the matrix. These rearrangements (which might 

produce a sign change in the real field) do not affect the characteristic 

polynomial over GF(2). The determinant of a matrix consisting of such 

blocks is the product of the determinants of these blocks. Hence, the 

characteristic polynomial of the cycle states is the product of the 

characteristic polynomials of the cycles. The characteristic polynomial of 

a cycle of length r will take the form of an r×r determinant: 

det  

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

========

x

x

x

x

x

x

1

1

1

1

1

1

= (x
r
 +1). 

Thus the characteristic polynomial of T becomes: 

det (T + xI) = x
k
 (x

r
1 + 1) . . . (x

r
i + 1)                                          (23) 

where k is the number of transient states and the subscripted r's are the 

lengths of the various cycles. We note that the eigenvalues are the roots 

of (23). In GF(2), the only possible eigenvalues are x = 1 (corresponding 

to one-eigenvectors that represent cycles) and x = 0 (corresponding to 

zero-eigenvectors that represent transient chains.) 

Cull 
[3]

 observed that the factorization of the binary characteristic 

polynomial is not always unique since: 

x
r
 + 1 = ( x + 1 )

r
                                                                         (24) 
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when r is a power of 2. We note that (20) is true since  

 (x+ 1)
r
 = ∑

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛r

k k

r

0

 x
k
 = 1 + x

r
 + ∑

−

=

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛1

1

r

k k

r
 x

k
                                   (25)   

and ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

k

r
{ for r = 2

m
, 1≤ k≤ (r-1)}is an even number that reduces to 0 in 

GF(2). This can be ascertained by viewing rows r = 2
m
 in Pascal’s 

triangle 
[19]

 since such rows consist solely of even entries except for their 

extreme entries, which are both equal to 1. We note also that the form 

(23) can always be reached provided the construction described in the 

previous paragraph is followed exactly. If a factor (x+1)
2m

 is obtained, it 

should not be reduced according to (24) to a factor (x
2m

+1). 

We note that the above considerations in terms of the state vector 

Y and the transition matrix T are still valid if the alternative state vector 

X and the function matrix A are used instead. Cull
 [3]

 asserted that the 

matrices T and A have the same characteristic polynomial. However, he 

did not offer a satisfactory proof for this assertion. A correct proof can go 

as follows and depends on the use of (7) and (10) together with the fact 

that the determinant of a product of several matrices is the product of 

their determinants 
[14]

: 

det(A + xI ) = det(PTP + xI)  

                    = det(PTP+ xPP) 

                    = det (P (T+xI) P) 

                    = det P  det (T+xI) det P 

                    = det (T+xI) det P det P 

                    = det (T+xI) det PP 

                    = det (T+xI) det I 

                    = det (T + xI)                                                                     (26) 

Eq. (26) extends to the finite case a theorem that is well established in the 

continuous case; that two similar matrices share the same characteristic 

equation. The Cayley-Hamilton Theorem 
[8] 

tells us that any matrix 

satisfies its own characteristic equation; that is, 

A
k
 (A

r
1 + I) ... (A

r
i + I) = 0                                                           (27) 
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and further, that any polynomial of a lower degree that A satisfies must 

divide the characteristic polynomial. Cull 
[3]

 asserted that there is an 

equation of lowest degree that A satisfies; which he called the minimal 

equation of A. Such an equation is typically given by the form 

A
j
 (A

r
h     + I) ... (A

r
g       + I) = 0                                                             (28) 

Since the matrix polynomial is identically zero it must map every state 

vector Xt to zero. Thus any state must be taken to a cycle and taken 

around the cycle an integral number of times. Thus in the minimal 

equation, j is the length of the longest transient chain and rh ... rg are 

distinct cycle lengths such that all other cycle lengths divide one of the 

r's with no remainder. We now demonstrate the above concepts via the 

following illustrative examples. 

Example 1 (revisited) 

Using Tables 4 and 5, we find 

det (T + xI) = det (A+ xI) = x (x
4
 + 1) (x

3
 + 1)                            (29) 

In this case the minimal equation is identical to the characteristic 

equation, i.e., 

A (A
4
 + I) (A

3
 + I) = 0                                                                (30) 

These facts tell us that the system has a transient chain of length 1, a 

cycle of length 4, and a cycle of length 3. These conclusions are readily 

verified by referring to the state diagram (Fig. 2 or Fig. 3). 

Example 2 (revisited) 

Using Tables 6 and 7, we find 

det (T + xI) = det (A+ xI) = x
3
(x

5
 + 1)                                        (31) 

and hence the system has 3 transient states and a cycles of length 5. Here, 

the minimal equation is not identical to the characteristic equation, but is 

given by  

A
2
 (A

5
 + I) = 0                                                                             (32) 

which means that the longest transient chain is of length 2 (in agreement 

with Fig. 6).                                                                                                                      

Example 3 (revisited) 

Using tables 8 and 9, we find: 

det (T + xI) = det (A+ xI) = x
6
(x + 1)

2
                                        (33) 
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and hence the system has 6 transient states and two cycles of length 1. 

The factor (x + 1)
2
 should not be replaced by (x

2
 + 1) which represents a 

single cycle of length 2. Here, the minimal equation is not identical to the 

characteristic equation, but is given by  

A
2
 (A + I)

2
 = 0                                                                             (34) 

which means that the longest transient chain is of length 2 (in agreement 

with Fig. 9). 

5. The Use of Eigenvectors 

5.1 One-Eigenvectors and Cycles 

The cyclic behavior of a synchronous switching network can be 

obtained from the X-type one-eigenvectors of the function matrix A or 

the Y-type one-eigenvectors of the transition matrix T. Cull 
[3]

 argued 

that the set of states in a cycle C maps onto itself, that is, 

A∑
C

X=∑
C

X                                                                                 (35)                         

where ∑
C

X is the sum (modulo 2) of the vectors representing the states on 

a cycle C. So the sum of the states on a cycle is a one-eigenvector of the 

matrix A. Eq. (35) can be stated for two specific cycles C1 and C2 as: 

A∑
1C

X=∑
1C

X                                                                                 (36)                         

and 

A∑
2C

X=∑
2C

X                                                                                  (37)                        

The sum (modulo 2) of (36) and (37) is   

A(∑
1C

X+∑
2C

X)= ∑
1C

X+∑
2C

X                                                           (38) 

Eq. (38) can be generalized to state that the sum of the states on any set 

of cycles is also a one-eigenvector of A. Relations (35)-(38) still hold 

when A is replaced by T and X is replaced by Y. Now let us consider any 

one-eigenvector of A: 

AZ=Z                                                                                          (39)  
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Since the set of vectors representing the states of the network form a 

basis of the 2
n
 dimensional vector space, 

Z=∑
i

ai Xi                                                                                  (40)  

where the Xi's are the 2
n
 vectors representing states of the network and 

each ai is either 0 or 1, and can be seen to equal (PZ)i , i.e., the ith 

component of PZ. This expansion of Z contains none of the Xi's that 

represent transient states since 

A
2n

Z=Z                                                                                        (41)                    

and no transient state can occur after 2
n
 steps. Thus Z contains only 

cyclic states. If Z contains any state on a cycle it must contain each cyclic 

state that maps to this state. Continuing this argument we see that if Z 

contains any state on a cycle it contains all the states on that cycle. Thus 

any one eigenvector of A is composed of the sum of the states on a set of 

cycles. This allows us to conclude that the number of independent one-

eigenvectors of A is the number of cycles exhibited by the behavior of 

the network represented by A. These considerations also hold for the 

transition matrix T, since if: 

AZ=Z                                                                                          (42)                    

PTPZ=Z                                                                                     (43)                     

or 

T(PZ) = (PZ)                                                                              (44)                    

The intersection Z1∧Z2 of two vectors, Z1 and Z2 is defined as the 

vector Z3 that represents the set of states that Z1 and Z2 have in common. 

If : 

Z1=∑
i

ii
(1)

a X                                                                               (45)                    

Z2=∑
i

ii
)(

a X
2                                                                              (46)                    

then 

Z1∧Z2 = ∑
i

iii aa X)( (2)(1)
                                                            (47)                    

Vectors representing distinct cycles have the property that: 
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C1∧C2 = C'1 ∧ C
'
2
 = 0                                                                (48) 

where C1=∑
1C

X , C2=∑
2C

X , ∑=
1C

1 YC
' , and ∑=

2C

2 YC
' . So if one knows 

that there are k cycles and k disjoint one-eigenvectors can be obtained, 

the cycles, their lengths, and the exact sets of states that form the cycle 

can be determined 
[3]

. We demonstrate some of the above ideas via the 

following example. 

Example 1 (revisited) 

The system in this example has the state diagram shown in Fig. 2 

or Fig. 3, and hence has two cycles. The first cycle C1 is:  

100111110100 →→→ , 

which has three states represented by the three vectors 

X = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

0

0

1

1

 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

1

1

1

1

, and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

1

1

1

1

1

1

1

, or    Y = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

0

0

1

0

 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

1

0

0

0

, and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1

0

0

0

0

0

0

0

                        (49) 

referenced in the basis B3 = [ ]3213231321211 xxxxxxxxxxxx

T
 

and hence, the sum of the vectors representing the states on the cycle C1 is: 

C1=∑
1 C

X = [ ]11110011
T
 or                                   (50a)                        

∑=
1C

1 YC
' = [ ]10001010

T
                                  (50b)                         

which can be seen to satisfy AC1=C1, TC
'
1
=C'1  . The second cycle C2 is  

010011101001010 →→→→ , 

which has four states represented by the vectors 
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X = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

0

1

0

1

 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

1

0

0

0

1

 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

1

1

0

0

1

1

, and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

1

0

1

0

1

0

1

, or    Y = 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

0

0

1

0

0

 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

0

1

0

0

0

0

 , 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

0

1

0

0

0

0

0

, and 

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0

1

0

0

0

0

0

0

    (51) 

and hence, the sum of the vectors representing the states on the cycle C2 is: 

C2=∑
2C

X = [ ]01110010
T
, or              (52a) 

∑=
2C

2 YC
' = [ ]01110100

T
                 (52b) 

which can also be seen to satisfy AC2=C2, C
'T
2
=C'2 . The sum of the 

states of the two cycles C1 and C2: 

C1 + C2 = (∑
1C

X+∑
2C

X) = [ ]10000001
T
, or        (53a)                     

C
'
1
 + C'2  = (∑

1 C

Y+∑
2C

Y) = [ ]11111110
T
                (53b)                    

Note that the 3 vectors in (49) and the 4 vectors in (51) together with the 

vector 

[ ]00000001
T
                                                       (54)  

representing the transient state 000, constitute a set of 8 vectors that form 

a basis of the 2
3
-dimensional vector space. The basis formed by the Y 

vectors is a permutation of the identity matrix I, while that formed by the 

X vectors is a vector-permutation of the state matrix P. That is why it is 

easier to visualize (48) for the C'  vectors than for the C vectors.   

5.2 Zero-Eigenvectors and Transient Chains 

The states of a transient chain come to an end at a state Xi whose 

next state AXi belongs to some cycle C. This next state serves also as the 

next state AXj of some state Xj belonging to C. Therefore, while Xi≠ Xj, 

we have:        
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AXi = AXj                                                                                   (55) 

or 

A (Xi + Xj) = 0                                                                          (56) 

  If we sum (modulo 2) relations of the form (56) for several 

transient chains, we obtain a relation of the form  

AZ = 0                                                                                        (57) 

where                  

Z = X(1) + X(2) + .... + X(2k)                                                          (58) 

is a typical zero-eigenvector, represented as the sum (modulo 2) of an 

even number of state vectors. Note that the vectors Xi are distinct for 

different transient chains, while the vector Xj is possibly shared by some 

chains, in which case duplicate instances of Xj cancel, two at a time, 

(Xj+Xj= 0). Therefore, an even number 2k of state vectors remain in (58), 

where k is the number of chains involved minus the number of Xj 

cancellations. There are as many independent zero-eigenvectors as there 

are chains. Each of these independent zero-eigenvectors is of the form 

(Xi+Xj), where the Xi’s are independent. Other zero-eigenvectors are not 

independent, since they are sums (modulo 2) of some of the independent 

ones. If Z is a zero-eigenvector of A, then PZ is a zero-eigenvector for T, 

since (57) implies that 

 PTPZ = 0,                                                      

PPTPZ = P0, 

T(PZ) = 0                                                                                   (59)   

However, it is more useful for T to use a row zero-eigenvector Z
T
, since 

Z
T
T = 0

T                                                                                                                                 
(60)

 

will have an independent solution for each row of T that is composed 

entirely of zeroes. Such a row will in fact correspond to a first state of a 

transient chain. If Z
T
 is a row zero-eigenvector of T, then Z

T
P is a row 

zero-eigenvector of A, since (60) implies 

Z
T
PAP = 0

T
     

Z
T
PAPP = 0

T
P,                                                                                                          

(Z
T
P)A=0

T
                                                                                  (61) 

We demonstrate some of the above ideas via the following example. 
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Example 3 (revisited) 

The state diagram in Fig. 9 has three transient chains. For each 

chain, Table 10 shows the end state Xi, the state Xj sharing the same next 

state with Xi, and the zero-eigenvector Z for matrix A corresponding to 

the chain. The three zero-eigenvectors Z in Table 10 can be verified to 

satisfy (57) and are independent. These three vectors constitute a basis 

for the zero-eigenspace of A. 

Table 10. The Three Transient Chains of Example 3. 

Chain Xi 
Xj 

(always state x1x2x3) 
Z = Xi + Xj 

x3→ x1x2→… [ ]00001111
T [ ]11111111

T [ ]11110000
T 

x2→ x1x3→… [ ]00110011
T [ ]11111111

T [ ]11001100
T 

x1→ x2x3→… [ ]01010101
T [ ]11111111

T [ ]10101010
T 

Table 8 demonstrates that the transition matrix T has three rows 

composed entirely of zeroes, which correspond to the three first states x1, 

x2, and x3 of the transient chains in Fig. 9. Therefore, the row zero-

eigenspace of T is spanned by the three independent row vectors  

Z1
T
 = [ ]00000010 ,  

Z2
T
 = [ ]00000100 ,  

Z3
T 

 = [ ]00010000 ,        

which are Y-type representations of the first states. 

6. Conclusions 

This paper presents a tutorial exposition of the classical matrix 

techniques used in the linear analysis of   synchronous switching 

networks. The current work parallels but dramatically extends and 

updates the seminal work of Cull 
[3]

. The analysis is based on the use of 

the simplest of the finite or Galois fields, namely, GF(2). 

 For future work, we propose the extension of the concepts and 

methods developed herein to higher-order finite or Galois fields GF(p
r
). 

There are situations in which the use of higher-order fields is possibly 

more compact, convenient, or enlightening. We also note that Cull 
[3] 

preferred finite fields to Boolean algebras. There is an equivalence 

between Boolean algebras and the so-called Boolean rings with unit 
[12]

. 

The simplest finite field GF(2) used by Cull 
[3] 

and used herein coincides 
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with the 2-element Boolean ring. Therefore, it might be useful to explore 

recent research findings 
[20,21]

, so as to utilize higher-order Boolean rings 

also in the current analysis. 

We also hope to consider possibilities of dispensing with the 

redundancies in the current representations. Though both the function 

matrix A and the transient matrix T are 2
n
×2

n
 binary matrices, each of 

them is equivalent to only n×2
n
 bits of information. The matrix A is 

uniquely determined by only n of its 2
n
-element rows. Similarly, the 

matrix T is uniquely determined by specifying (in each of its 2
n
 columns) 

the location of a single 1 element among 2
n
 elements. Such a 

specification requires n bits only. We believe that the removal of 

redundancies from the current matrix representation can lead to a 

systematic derivation of scalar representations of synchronous switching 

networks. Such a systematic derivation could replace the ad hoc 

derivations of scalar equations or reduced scalar equations given in Ref. 

[9] and [10], respectively.   

Another possible area of future investigation is the use of spectral 

techniques 
[22]

 in solving the transition or difference equations over 

GF(2) arising in the study of synchronous switching networks. Such an 

approach is promising due to the analogy between the current discrete 

case and the continuous case. Needless to say, spectral or transform-

domain techniques are very powerful in the solution of differential 

equations arising in the classical dynamic system theory. 

Finally, we would like to investigate the relation between the 

current state matrix P, and the transformation matrix that relates the 

vector representations of a general n-variable switching function in the 

operational domain (minterm expansion) and in the function domain 

(Reed-Muller expansion) 
[23]

.    
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