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Abstract.  In this paper, a new class of periodic mounts for isolating 
the vibration transmission from vehicle engine to the car body and 
seats is presented. Periodic mounts exhibit unique dynamic 
characteristics that make them act as mechanical filters for wave 
propagation. As a result, waves can propagate along the periodic 
mounts only within specific frequency bands called the “Pass 
Bands” and wave propagation is completely blocked within other 
frequency bands called the “Stop Bands”.   

The experimental arrangements, including the design of 
mounting systems with plain and periodic mounts are studied first. 
The dynamic characteristics of such systems will be obtained 
experimentally in both cases. Tests are then carried out to study the 
performance characteristics of periodic mounts with geometrical 
and/or material periodicity. The effectiveness of the periodicity on 
the vibration levels of mounting systems has been demonstrated 
theoretically and experimentally. Finally, the experimental results are 
compared with the theoretical predictions. Good agreement is 
obtained between theory and experiments. 

Keywords: Transfer matrix, vibration isolation, periodic mounts. 

1.  Introduction 

Customer awareness and sensitivity to noise and vibration levels caused 
the transportation industry to regard noise and vibration as important 
criteria for improving market shares. One important source of mechanical 
vibration in automobiles is the engine. The vibrations of the engines may 
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cause structural failure, malfunction of other parts, or discomfort to 
passengers because of high level noise and vibrations. The mounts of the 
engines act as the transmission paths of the vibrations transmitted from 
the excitation sources to the body of the vehicle and passengers. 
Therefore, proper design and control of these mounts are essential to the 
attenuation of the vibration of platform structures. To improve vibration 
resistant capacities of engine mounting systems, vibration control 
techniques may be used. For instance, some passive and semi-active 
dissipation devices may be installed at mounts to enhance vibration 
energy absorbing capacity. Analysis and design of such mounts are the 
main objectives of this paper. 

In general, vibration isolation can be achieved partially with the use 
of many types of compliant connections between the vibration source and 
the device to be protected. The classical approach to design isolation 
systems focuses primarily on the properties of those compliant plain 
mounts without regard to the effect of using the periodicity concept on 
the isolated device.  

The study of periodic structures has a long history. Wave 
propagation in periodic systems related to crystals, optics, and the like 
has been investigated for approximately 300 years. Brillouin [1] 
developed the theory of periodic structures for solid state applications 
and then, in the early seventies, the theory was extended to the design of 
mechanical structures [2, 3]. Since then, the theory has been extensively 
applied to a wide variety of structures such as spring-mass systems [4], 
periodic beams [2, 5-8] stiffened plates [7-8], ribbed shells [7] and space 
structures. Examples of such structures are found in many engineering 
applications. These include bulkheads, helicopter drive shaft [9], airplane 
fuselages, vehicle engine mounting systems [10], and helicopter gearbox 
supporting system [11]. Each such structure has a repeating set of 
stiffeners which are placed at regular intervals. Sackman et al. [12] 
presented a layered notch filter device in passive mode that is limited 
only for high-frequency vibrations. Such Filter which was developed 
theoretically based on Floquet theory is a periodically layered stack of 
alternating materials with widely different densities and stiffnesses. 
Using modal analysis Szefi [13] examined the effects of three-dimensional 
elasticity on periodically layered isolators in compression. 
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Periodic rods in their passive mode of operation exhibit unique 
dynamic characteristics that make them act as mechanical filters for wave 
propagation. As a result, waves can propagate along the periodic rods 
only within specific frequency bands called the “Pass Bands” and wave 
propagation is completely blocked within other frequency bands called 
the “Stop Bands”. The spectral width and location of these bands are 
fixed for 1-D passive periodic structure, but tunable in response to the 
structural vibration for active periodic structures [14, 15].  Asiri et al. [15] 
presented a tunable mechanical filter with active periodic rods in a quasi-
static manner, to isolate the wave propagation of longitudinal vibration. To model 
the tunable mechanical filter, the spectral finite element analysis and 
transfer matrix method [14] will be used to analyze the hybrid periodic rod 
and determine the propagation parameter, µ  which indicates the regions 
of stop bands and pass bands. 

This paper is organized in four sections.  In Section 1, a brief introduction 
is given. Section 2 presents the theoretical background of passive mounts 
and Section 3 demonstrates the performance characteristics of the mounts 
alone as well as the mounts and engine system assembly. Comparisons 
between the theoretical and experimental characteristics are also 
presented in Section 3.  Section 4 summarizes the findings and the 
conclusions of the present study as well as the direction for future 
research. 

2. Theoretical Modeling of Periodic Mounts 
 
2.1 Overview 

In this section, the emphasis is placed on studying the dynamics of 
one-dimensional periodic mounts in their passive mode of operation. The 
dynamics of one-dimensional periodic mounts are determined using the 
transfer matrix method. The basic characteristics of the transfer matrices 
of periodic mounts are presented and related to the physics of wave 
propagation along these mounts. The methodologies for determining the 
pass and stop bands as well as the propagation parameters are presented. 
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2.2 Dynamics of Passive Mounts 

2.2.1 General  

Consider the generic one-dimensional periodic mount shown in Fig. 
1. The undamped dynamics of the kth cell are determined from the 
following finite element expression: 

      

k k k

k k k
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M M u K K u F
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


      (1) 

where Mij and Kij  are appropriately partitioned matrices of the mass and 
stiffness matrices.  Also, u and F define the deflection and force vectors 
with subscripts Li and Ri denoting the left and right sides of the kth cell.  
 
 
 Cell 1               Cell 2                     Cell k              Cell k+1                       Cell N-1          Cell N 

(a)  Periodic mount with N cells 
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              uRk+1
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(b) – Interaction between two consecutive cells 

Fig. 1. One-dimensional periodic mount. 

 For a sinusoidal excitation at a frequency ω , Equation (1) reduces to: 
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where: Kd is the dynamic stiffness matrix of the kth cell. 
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Equation (2) is rearranged to take the following form: 
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 Considering now the compatibility and equilibrium conditions at 
the interface between the kth and the k+1th cells, yields the following 
expressions: 

          1 1
and  
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+ +

= = −     (4) 

 Substituting these conditions into Equation (3), it reduces to: 
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In a more compact form, Equation (5) can be rewritten as: 
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where Y and [Tk] denote the state vector = {uL FL}T and the transfer 
matrix of the kth cell. Note that the transfer matrix relates the state vector 
at the left end of k+1th cell to that at the left end of the kth cell.  For 
exactly periodic mounts, [Tk] =  [T] and the eigenvalue problem of [T] 
can be written as: 

              [T] Yk =  kYλ        (7) 

Combining Equation (6) and (7) gives: 

             1k kY Yλ+ =          (8) 

indicating that the eigenvalue λ  of the matrix [T] is the ratio between the 
state vectors at two consecutive cells. 
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Hence, one can reach the following conclusions: 

 a) If λ = 1 , then 1k kY Y+ = and the state vector propagates along 
the mount as it is.  This condition defines a “Pass Band” condition, and 

 b) If 1λ < , then 1k kY Y+ < and the state vector is attenuated as it 
propagates along the mount. This condition defines a “Stop Band” 
condition. 

 A further explanation of the physical meaning of the eigenvalue λ  
can be extracted by rewriting it as: 

  
ie eµ α βλ += =         (9) 

where µ  is defined as the “Propagation Constant” which is a complex 
number whose real part (α ) represents the logarithmic decay of the state 
vector and its imaginary part (β ) defines the phase difference between 
the adjacent cells. 

2.2.2 Uniform mounts 

Consider the plain rod of Fig. (2) : 

           U 

X 

L 

Fig. 2. Mount undergoing longitudinal vibrations. 

As the Equation of motion of the rod is given by: 

    ( / ) 0xx ttu E uρ− =  

where u is the longitudinal deflection, ρ  is the density and E is Young’s 
modulus. 
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 Then, assuming a solution ( , ) ( ) i tu x t U x e ω= , reduces the 
Equation of motion to: 

   
2( ) ( / ) ( ) 0xxU x E U xρ ω+ = ,        or  

    
2( ) ( ) 0xxU x k U x+ = .      (10) 

where: k = wave number = ρ ω/ E .     

Using the following spectral shape function:   ( ) ikx ikxU x Ae Be−= + , 
which is also a solution of Equation (10), yields the spectral finite 
element description of the dynamics of the mount as outlined by 
Doyle[16].    This results in the following dynamic stiffness matrix of the 
mount: 
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The corresponding Transfer Matrix [T] takes the following form: 
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2.2.3 Periodic mounts 

Consider now the longitudinal vibrations of the periodic mounts 
with geometrical or material discontinuities as shown in Fig. (3).  

 

Fig. 3. The periodicity types of a unit cell of passive periodic mounts. 

The dynamics characteristics of the individual substructure (a or b) 
can be described by its transfer matrix [Ts], as defined by Equation (12), 
as follows: 
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Combining the transfer matrices of the substructures a and b, yields the 
transfer matrix [T] for the asymmetric unit cell as follows: 

    [T] = [Tb] [Ta]               (14) 
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The eigenvalues of the transfer matrix [T] of the unit cell can then be 
calculated to determine the propagation parameter and the stop/pass 
bands of mounts with various geometrical and material discontinuities. 

3. Performance of the Passive Mounts 

3.1 Overview 

In order to demonstrate the feasibility of the concepts presented in 
Section 2, experimental investigations were conducted. These investi- 
gations were carried out in two stages. In the first stage, the vibration 
attenuation characteristics of several configurations of the passive mount 
were determined and evaluated. These configurations were then inte- 
grated with an engine assembly to evaluate their performance as means 
for attenuating the vibration transmission from the engine to the body.     

3.2 Experimental  Facilities 

In this study, two experimental test rigs have been employed to 
evaluate the performance of the passive periodic mounts. The first test rig 
aimed at monitoring the vibration transmission characteristics of the 
mounts alone as influenced by geometrical and material discontinuities. 
Figure 4 shows the details of the employed test facility. 

The second experimental setup shown in Fig. 5 was used to 
measure the vibration transmission from the engine to the body through a 
set of four passive periodic mounts. The setup is used specifically to 
study the effect of the geometrical and material discontinuities on the 
vibration transmitted through these mounts.  

In this experiment, the struts were cut in three forms, plain struts as 
show in Fig. 6(a), geometrical struts shown in Fig. 6(b) and material and 
geometrical discontinuity struts as shown in Fig. 6(c) which consist of 
Aluminum and Rubber with the diameters and lengths shown in Table 1 
with different number of cells starting from two cells to five cells to 
compare between them and to show the effectiveness of the number of 
cells on the vibration isolation process. In Material and Geometrical 
Discontinuity Struts, the Aluminum and Rubber were fixed together 
using a special kind of glue which can carry the applied loads. 
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Fig. 4. Experimental setup for evaluating the vibration transmission characteristics of the mounts. 

 

 
 
 
 
 
 

          

 
        
 

 

 

 
 
 
 
 
 

 

Fig. 5. Experimental setup for measuring vibration transmission with periodic mounts. 
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                            (a)                 ( b)                         (c) 
 
Fig. 6. Types of struts used during the experimental setup, (a) Plain Strut, (b) Geometrical 

Strut, (c) Material and Geometrical Discontinuity Strut. 

       Table 1. The diameters and lengths of Aluminum and Rubber cells. 

Length, mm Diameter, mm  

20 50 Aluminum 

15 43 Rubber 

  

   3.3. Finite Element Modeling 

In the present study, ANSYS FE code is employed to investigate 
the dynamic characteristics of the mounts. The specifications of the 
model shown in Fig. 7 are as follows: 

• Element type used is Solid Brick eight Node 92 for rigid bodies.  
• Material properties: the material properties used in the models is 

shown in Table 2. 
•  Degrees of freedom: all models were constrained at X-Y 

directions. So one degree of freedom was applied which is 
translation in Z-direction.  

•  Mesh type is smart size 6-default. 
•  Solution: Modal Analysis and Harmonic Response Analysis. 
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Fig. 7. ANSYS FE model for material and geometrical discontinuity strut of five cells. 

    Table 2. Material properties. 

Material  Density(kg/m3) Modulus of Elasticity (GPa) 
Aluminum 2700 69 

Steel  7000 207 
Rubber (Mearthane 

Durethane)  
1200 0.00245 

4. Discussion of  Results 

4.1 Mount Alone 

4.1.1 Periodic Mounts with Geometrical Discontinuity 

Figures 8(a) and 8(b) show respectively the magnitude of the 
experimental and numerical transfer function (TR) between the input 
excitation as applied to one end of the mount and the transmitted 
acceleration to the other end of the mount as obtained by a passive mount 
with geometrical discontinuities. Good agreement can be observed 
between the experimental and numerical results using ANYSYS FE 
model. The displayed results indicate clearly attenuation of the vibration 
for the start of the frequencies higher than 12,000Hz. Figure 8c shows 
that the stop band can be clearly predicted theoretically by plotting the 
real part α  of the propagation parameter µ . For values of α  ≠ 0, the 
stop band can be clearly identified and match closely the experimental 
and numerical (ANSYS) results. Figures 9&10 show other configurations 
of periodic mounts with geometrical periodicities, which clarifiy the 
effect of geometrical parameters on the location of the stop band. 
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Fig. 8. Experimental and numerical TF using ANSYS, and propagation parameter for a 
periodic mount with geometrical discontinuities ( aD =15 mm, La =70 mm, bD = 50 
mm, and Lb=20 mm). 

 
Fig. 9. Experimental and numerical TF using ANSYS, and propagation parameter for a 

periodic mount with geometrical discontinuities ( aD =5 mm, La =50 mm, bD = 50 
mm, and Lb=24 mm). 
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Fig. 10. Experimental and numerical TF using ANSYS, and real part of propagation factor 
for a periodic mount with geometrical and material discontinuities ( aD =50 mm, 

La =20 mm, bD (Rubber)= 43 mm, and Lb=15 mm). 

4.1.2  The Periodic Mounts on the Shaker 

Figure 11 shows clearly that the periodic mounts are much more 
effective than the engine seats in attenuating the transmission of vibration 
from the shaker to the upper plate through the periodic mounting system.  

4.1.3  Motor Supported by Periodic Mounts 

Figures 11 - 13 display the magnitude of the transfer function 
between the input excitation of the motor and the transmitted acceleration 
to the base as obtained by a passive mount with geometrical and material 
discontinuities.  It is evident that the passive mounts have been effective 
in attenuating the vibration transmission from the motor to the base.  
However, it is important to note that the use of mounts with material 
discontinuities is found to be more effective in suppressing the vibration 
transmission than the mounts with geometrical discontinuities. Such 
effectiveness stems from the fact that material discontinuities result in 
higher impedance mismatch at the discontinuity interfaces. 

35000 30000 25000 20000 15000 10000 

Plain 

Periodic 

Plain 

Periodic 
1x10-12 

1x10-10 

1x10-8 

1x10-6 

2 

4 

6 

8 

10 
realµ

Frequency, Hz 

5000 

(c) 

(b) 

(a) 

1x10-4 

1x10-3 

1x10-2 

1x10-1 

1 

TF, dB 

TF 



Periodic Mounts to Isolate Vibrations 111 

 

Fig. 11. Vibration transmission from the shaker through the engine seats and periodic 
mounts to the upper plate. 

 

Fig. 12. Vibration transmission from motor supported by periodic mounts with geometrical 
periodicity ( aD =5 mm, La =50 mm, bD = 50 mm, and Lb=24 mm).  

Periodic Mounts 

Plain Mounts 

1x10-4 

1x10-3 

1x10-2 

1x10-1 

TF, dB 

realµ

Engine 
Seat 

Periodic 
Mount 

Shaker Shaker 

Frequency, Hz 

Engine Seats 

Periodic 

TF, dB 

0 



S. Asiri and A. A.N. Aljawi 112 

 

Fig. 13. Vibration transmission from the motor through the periodic mounts (five cells) with 
geometrical and material periodicity ( aD (Aluminum) =50 mm, La =20 mm, 

bD (Rubber) = 43 mm, and Lb=15 mm). 

5. Conclusions 

This paper has presented a new class of periodic mounts for 
isolating the vibration transmission from vehicle engine to the car body 
and seats in an attempt to produce quiet interior environment of the 
vehicle. The theory governing the operation of this class of mounts has 
been presented.  The factors governing the design of effective mounts 
have been identified.  The performance characteristics of passive mounts 
alone have been measured experimentally and compared with the 
theoretical predictions. Close agreement between theoretical predictions 
and experimental results has been achieved. The performance of the 
mount with a motor assembly has also been monitored experimentally. 
The predictions of the stop bands have also been found to be in close 
agreement with the experimental results. The periodic mounts have been 
compared to plain mounts. Such periodic mounts are found to be much 
more effective than the engine seats in attenuating the transmission of 
vibrations. Mounts with geometrical and material discontinuities are 
found to be more effective in attenuating the transmission of vibration 
from the motor to the body. Such effectiveness is attributed to the large 
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degree of impedance mismatch produced with geometrical and material 
discontinuities.  

Attempts to provide the passive mounts with active control 
capabilities are a natural extension of the present study. Apart from their 
unique filtering characteristics, the ability of periodic mounts to transmit 
waves, from one location to another, within the pass bands can be greatly 
reduced when the ideal periodicity is disrupted or disordered. Attempts 
will be made to capitalize on such unique characteristics. This results in 
the well-known phenomenon of  “Localization” whereby the effects of an 
external disturbance are localized at (or confined to) the structural zone 
surrounding it [17]. In the case of passive mounts, the aperiodicity (or the 
disorder) can result from unintentional material, geometric and 
manufacturing variability. However, in the case of active periodic mounts 
the aperiodicity can be intentionally introduced by proper tuning of the 
controllers of the individual substructure or cell [18] Baz and Asiri et. 
al.

[15]. With such unique filtering/localization characteristics of the 
periodic/aperiodic mounts, it would be possible to passively or actively 
control the wave propagation both in the spectral/spatial domains in an 
attempt to stop/confine the propagation of undesirable disturbances. 
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هتزازت محرك العربة المتحركةاقوائم التثبيت الدورية لعزل   
 

  وعبدالغفار أزھري الجاوي، سعید عسیري
 

جامعة الملك  - كلیة الھندسة- وتصمیم النظم المیكانیكیةالإنتاجقسم ھندسة 
  ةالمملكة العربیة السعودی - ٢١٥٨٩  ، جدة٨٠٢٠٤. ب.ص - عبدالعزیز

 
في هذه الورقة تم تقديم نوع جديد من قوائم التثبيت  .المستخلص

الدورية لعزل انتقال الاهتزاز من محرك العربة إلى جسم السيارة 
  فيههذا النوع من قوائم التثبيت تظهر. وكذلك مقاعد العربة

 المرشح الميكانيكي خصائص ديناميكية فريدة حيث تقوم بدور
ونتيجة لذلك فإن الموجات تنفذ خلال القائم . لسريان الموجات

الدوري فقط إذا كان التردد الموجي للموجات في نطاقات ترددي 
المقابل فإنها تعزل الموجات في و" نطاق النفوذ:"معين يسمى 

نطاق : "بالكامل إذا كان التردد في نطاق ترددي معين يسمى
  ".الصد

 تصميم ، أولا بما في ذلكالتجارب المعملية إجراء وقد تم
الصفات الميكانيكية لتلك أما . أنظمة التثبيت التقليدية والترددية

 ،بعد ذلك و. الحالتينتاتم الحصول عليها معمليا في كلفقد الأنظمة 
لدراسة خصائص أداء القوائم التثبيتية الدورية   التجاربتم إجراء 

تم أيضا كما . أو نوع المادة لها/ندسي ونتيجة لتغير الشكل اله
 جدوى الدورية على مستويات الاهتزاز لأنظمة قوائم التثبيت إثبات

أخيرا تم مقارنة النتائج المعملية مع النتائج و. نظريا ومعمليا
  .النظرية وكان هناك توافق بين النظرية والتجارب

 


