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ABSTRACf. A numerical algorithm is presented for finding a local optimum
of nonlinear programming problems that use quasi-Newton methods. The
algorithm uses the squared slack variable philosophy and an updated for-
mula with a numerically stable method for maintaining the positive definite-
ness at each iteration. A modification of the starting matrix of approxima-
tion of the Hessian by the BFGS formula is also given. Some numerical re-
sults are given to show the efficiency of the algorithm.

Introduction

In the last decade, a great deal of attention has been paid to extending Newton and
quasi-Newton methods for solving general constrained optimization problems. One
of the most promising approaches on this line is the method which iteratively solves
linearly constrained subproblems,

This method was originated by Wilson!l]. Wilson's algorithm consists of a sequence
of quadratic programming subproblems and converges locally with a quadratic rate.
However, his method requires second derivatives of both objective' and constrained
functions.

Modified Wilson's methods with quasi-Newton updates are studied by Garcia and
Mangasarian!2] and Han!3]. They show that the methods have superlinear rates of
convergence. PoweW4] added further refinement and analysis. .

PoweW5] studied the efficiency of BFGS during the calculation when applied to
quadratic functions and noticed also the behaviour in sequential quadratic program-
ming methods for constrained optimization whose step length do not exceed one.
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The extension of quasi-Newton method to solve inequality constrained problems
by converting them into equality constrained by the addition of squared slack vari-
able is well known but rarely used. Tapia[6] attempted to demonstrate that the
squared slack variable approach to inequality constraints need not suffer from the
standard criticisms attached to it: increased dimension, numerical instability and
presence of singularities. Specifically, it is these removable singularities that eventu-
ally leads to a pure active constraint approach.

In this paper we develop the algorithm proposed by Tapia[6] to solve constrained
optimization problems.

The proposed algorithm applies quasi-Newton method and maintain positive defi-
niteness of the Hessian of the Lagrangian function and also for the other matrix
whose diagonal elements are augmented by a factor multiplied by the added squared
slack variable. The algorithm comprises two different "Techniques" for maintaining
the positive definiteness. The first uses a numerically stable method that is a modifi-
cation of the modified Cholesky factorization[7] given in Gill et al.[8]. The other
technique uses a safeguarded procedure with the BFGS formula[9].

In section II, the fundamental equations of the proposed algorithm and its basic
features are described. In section III, refinements of the algorithm is described from
computational point of view and some comments are given.

The Proposed Algorithm

The nonlinear programming problem to be considered in this paper is defined as

min f(x)
x

subject to

gj (x) = 0 , i = 1,2, ..., m <.1)

gj(x) 50 , i=m+1,...,p

where f, gj: Rn -OJ- R

Squared Slack Variable Philosophy

If we introduced the slack variables Ym+l, ..., Yp and define F, gi: Rn+p-m -OJ- R by
Tapia[6]

F(x,y) = f(x)

gj(x,y)=gj(x) , "',...

& (x,y) = & (x) + ~ y~ , i = m +

i= ,m

,p

then we may consider the following equality constrained optimization problem

minimize F(x,y)
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(2)subject to

gi(X,y)=O ,i=1,2,...,p

The Lagrangian function associated with the problem (1) is given by

p
L(X,y,A) = f(x) -I Ai gj (x,y)

i=l
(3)

The equation[6,IO)

VxL(X.,y.,Aj
VyL(X.,y.,Aj
V~L(X.,y.,Aj

VL(x.,y.,~.) = =0 (4)

is the stationary point (KT) condition at x.,y. and A..

As usual a Taylor series for VL about xr'Yr and Ar gives

VL (xr + 8xr,Yr + 8Yr'~r + 8~J = VL (xr,Yr,~J + [V2L (X;,Yr,~J]
(5)+

8xr
8Yr
8Ar

Neglecting higher order terms and setting the left hand side to zero by virtue of (4)
gives the iteration

[V2L (Xr,Yr,?.J] = -VL (Xr,Yr,AJ (6)
Bxr

BYr

BAr--
For simplicity we put V2L (Xr,Yr,AJ = V2L (.),

V;sL (Xr,Yr,AJ = V;sL (.) , 'v'r , s

and Bx = Bxr, By = BYr and BA = BAr

Equation (6) gives

V~L (.) V~yL (.) V~A (.)
V~L (.) V~L (.) V~AL (.)
V~x (.) V~y (.) V~L (.)

&x
&y
&A

] [ VxL(.) ]= -VyL(')

V),L(.)

Formulae for V2L ( .) and VL ( .) are readily obtained from (3) giving the system

order n p-m p

n
[ G(X,A.) p-m 0 ..

p. -AT

0

-AAI

-A~,y

8x

8y
8>.

Vxf-A>'"
-A~I Yr

-g(X,y)

-A

-Ao,y
0

(7)=-
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Ao,y = [0 Ay]

and Ay = diag(Ym+1' Ym+2, ..., Yp)

A~I = diag (Am+1, Am+2' ..., Ap)

A is the Jacobian matrix of constraint normals evaluated at xr, that is

A = [Vx g (x,Y)]x = [Vx g (x)]x
r r

In fact it is more convenient to write

Ar+1 = Ar + &A , &y = Yr+1 -Yr , &x = Xr+1- Xr

and solve the system

(8)

(9)

(10)

G(Xr+l-xJ-AAr+l = -Vf

-A).l Yr+l -Ao,y(Ar+l -AJ = 0

-AT (Xr+l- XJ -A~,y (Yr+l- yJ = g (x,y)

Equation (8) gives
Xr+l = Xr -G-l Vf + G-l AAr+l (11)

Equation (9) gives
Yr+l = -(AA.J-l Ao,y (Ar+l- AJ

That is
A -A( ' r+l r

)Yr m+Ym+l
Ar

Ym+2

Yp

--

r+l

From which we have

Y A -A(-!.!!).= ( r r+l)., i = m + 1,
Y I A I

r r
, p

112)or

(~ ).= (~~). , i = m + 1, ..., p
Ar 1 Yr 1

Equations (!Q) an~ (11) give ,
AT G-l AAr+l = AT G-l Vf -A~,y (Yr+-1Y.) -g (x,y) == 0
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Using (12), we have

-g(x,y) =0= AT G-1 Vf -AT
o,yAT G-1 AAr+l

>"r+1

-(TYJm+1r

>"r+l
-(T yJp

r

1 2
, 2: Ym+l 'Let w = (0, 0,

g (x,y) = g (x) + w

we have
Ar+l = (AT G-1 A -A-I yZ)-1 (AT G-1 Vi -g (x) ~ w)

where
A I d. (~ -I ~ -I ~ -I )-= lag ~I , ~2 , .,. , ~p

and y2 = diag (0,0 , ..., Y;+I , Y;+2' ..., Y~)

Equation (10) gives

+ g (xJ + WI-AT(~+l -XJ =
0

(Ar+l 2
)-~ Yr m+l

r

-(~ Y;)p
Ar

Then we have

(~ ).= [AT (Xr+l -XJ+ g (XJ + wr
].A 1 Y2 1

r r

i =m + 1, ...,p

-xJ + g (xJ + w'l,
and

AT (Xr+l
(Yr+Ji = (Yrh -. .Yr

where (U)i denotes the i-th component of the vector U.

The method requires initial approximations Xo,Ao, and uses (13), (11) and (14) to

generate the iterative sequence {Xr,Yr,Ar}.
As it is clear from these equations, the use of the squared slack variables does not

necessitate the increase of dimension of the problem except that, it just uses a new

vector Y of (p -m) components.
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Equality Constrained Problem

If the problem to be considered is an equality constrained problem, that is p = m,
then we have the following two fundamental equations.

~r+l = [AT (xJ G-l (xr,~J A (XJ]-1 [AT (xJ G-l (xr'~r) Vf (xJ -g (xJ] (15)

Xr+1 = Xr -G-1 (Xr,AJ Vf (xJ + G-1 (Xr,AJ A (xJ Ar+1 (16)

The method requires initial approximations Xo,Ao, and uses (15) and (16) to generate
the iterative sequence {Xr,Ar}.

The fomula (16) can be put in the form

Xr+l = Xr + z.

(17)
where

Zr = -G-I (Xr,A.J Vf (xJ + G-I (xr,A.J A (xJ A.r+1 (18)

Let the Jacobian matrix A(xJ, which is of order n x m, be partitioned to m column
vectors each of which has n elements, that is

A = [AIAz ...Am] and hence G-I A = [G-I Al G-I Az ...G-I Am]

Let Vj = G-I Aj, j = 1, ..., m (19)

which can be solved by Cholesky factorization. Let Y be a matrix whose column vec-
torsarevl,vz",vm,then .

ATG-I A = [AT VI ATVz ...ATVm] = ATy

Let G = L T L, then we have

AT V = AT G-1 A = AT (L -I)T (L -I) A = (L -I A)T (L -I A)

that we retain a symmetrical form. Equations (15) and (16) give

Xr+1 = xr-v + VrAr+1

Ar+1 = (AT (xJ V J-1 Ur (21)

with

= G-1 (Xr,AJ Vf (xJ (22)
and

Ur = AT (x.) Y..- g (x.) (23)

We note that AT v( = AT G-1 A) is positive definite as long as G is positive definite
(provided that the columns of A are linearly independent), and hence equation (21)
can also be solved by Cholesky factorization.
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From the fundamental equations (15)-(18), it is clear that if G(X,A) is positive de-
finite for all x E RD, and Xo,Ao are sufficiently close to x.,A., the sequence of appro xi-
mations Xr,Ar converges to both the solution vector x. and the vector of optimum Lag-

range multipliers A}10!.
The Approximation of The Hessian Matrix G(x,.\)

.For the proposed algorithm, the Hessian matrix G(x,A) is approximated by the
BFGS formula referred by Powe1ll9! on account of its success in solving uncon-
strained minimization problems. The BFGS formula is given by

BZZTB ')")' T
B = B -r r ! ! + r L (24)r+ r ~z~ Br Zr

where G(Xr,AJ is replaced by B(Xr,AJ, that is, Br

andZr = Xr+1-xr,

also Ar = Vx L(xr+1,AJ -Vx L(xr,AJ.

Bo is selected to be the unit matrix I, of order n.

The formula (24) maintains positive definiteness if the condition Z~ 1r > 0 is satis-
fied. However this is not always the case due to the negative curvature of the Lagran-

gian function.
The use of BFGS formula with Z~ 1r > 0 should ensure in theory that all Hessian

(or inverse Hessian) approximation remain positive definite. However, in practice it
is not uncommon for rounding errors to cause the updated matrix to become singular
or indefinite. The use of Cholesky factorization allows one to avoid this serious prob-
lem: the loss (through rounding errors) of positive definiteness in the Hessian (or in-

verse Hessian) approximation.
In the following a numerically stable method for maintaining positive definiteness

and forming Zr in this case is presented. It is a modification of the modified Cholesky
factorization given in Gill and MurrayI11], and Gill et aI.IS]. The result is the follow-

ingI7]:
Br = Br + ~r I

where

~r = 0 if Br is safely positive definite

~r > 0 is sufficiently large that Br is safely positive definite otherwise.

Clearly the smallest possible ~r (when Br is not positive definite) is slightly larger
than the magnitude of the most negative eigen value of Bro Although this can be com-
puted without too much trouble, a much simpler algorithm is provided that may re-

sult in the larger ~ro
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We first apply the Gill and Murray modified Cholesky factorization algorithm to
Br, which results in

Br + Er = LrL~,

Lr is a lower triangular matrix and Er a diagonal matrix with nonnegative diagonal
elements that are zero if Br is safely positive definite. If Er = 0, ~r = o. If Er 4= 0, we
calculate an upper bound <Xl on ~r using Gerschgorian circle theorem, as follows. The
matrix B is said to be strictly diagonally dominant if,

n
bii -I IbiJ > 0

i=l
j~i

, Po are the eigenvalues of B, we haveand if PI , P2,

n
miD Pi ~ miD {bii -I Ibijl}
l~i~n l~i~n j=l

j*i
n

max Pk ~ max {bkk + I Ibkjl}
l..k..n l..k..n j=l

j+k

We let

al = max {(Pmax -Pmin) 81/2 -Pmin , O}

if al = 0 the matrix B is positive definite

if al > 0 al I must be added to B so that B = B + al I is strictly diagonally domin-
ant.

Since a2 = max {EJ = max {~i}
lEOiEOD lEOiEOD

is also an upper bound on ~r' wet set ~r = min {al, aJ and conclude the algorithm by
calculating the Cholesky factorization of

Br = Br + ~r I.

In the classical Cholesky method, the decomposition Br = Lr L; is performed in n
steps in each of which a column of Lr is determined. The jth step Cholesky's method

is then given by

j-l
1.. = (b.. -~1J 1J .:,

k=l

ljk lik) / ljj , i = j + 1 , n

In the modification, the procedure acts directly to limit the size of the elements of
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Lr when the matrix Br is not positive definite. It is clear from equation (25) that the
elements of the jth row of Lr, 1jk, k = 1,2, ..., j -1, are computed as part of the com-
putation ~f 1jj. It is possible for 1jj to be very small and hence from equation (26) for
1ij to be large. If the 1ij elements are considered too large, then can be reduced in
modulus by increasing the diagonal elements bjj. The algorithm is identical to the
classical Cholesky method except that the elements 12i" j are modified so that they are
positive and that each of the resulting off-diagonal e ements is less than Bj in mod-
ulus. The parameters Bjis the bound imposed on the elements 1ij in order that the fac-
torization has to be numerically stable.

Let 1~2 be the modified l;j. It can be written as

1~2 = max (8 , 11;jl , 0; / B;) (27)

where 8 is the machine precision and if l;j < 8 this corresponds to Br not being suffi-
ciently positive definite. OJ is assumed to be

j-l
6j = m~x {Ibij -I

I k=l
n}+lik Ijkl : i =

That is OJ = m~ {!lij liil : i = j + 1 ,
I -

and11..1~ 8. i = J" +
1 nI) ) , , """ ,

,n

where
lli = 1::2 - 12
r-J n jj

If this equation for 1il2 is compared with (25), it is clear that the definition of the
off-diagonal elements given by (26) is identical to that which would have resulted if,
on applying Cholesky's method, the diagonal elements of the matrix to be factorized
had been given by bjj + JAi. The factors obtained by the modified procedure are,
~erefore, identical to those obtained by applying Cholesky's method to the matrix
Br = Br + Er-

The value of Bj can be determined from the result of the following theorem.

Theorem
Let Br be a symmetric matrix with bounded elements. The jth diagonal element ~j

of the diagonal matrix Er associated with the modified Cholesky factorization of Br is
bounded and satisfies

0 :,.; ~j :,.; 1il2:"; max {& , Ibjjl + G -1) BJ ' 1Jj / Bj + G -1) Bj} (29)

where
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1}j = max Obijl : i = j + 1 ,

,o}

Proof

From (27) : Ijj ~ OJ fBi'

and from the modified Cholesky factorization we have

j-l -
1.. = (b.. -~ l. k l. k)/ 1.. i = J" + 1

IJ IJ ..J 1 JJ ' ,
k=l

,0,

so that IliJ ~ Bj , and

11.. 1..1 ~ Ib.. 1 +
I) II I) D,

If B. ~ Bk k = 1 2J ' , (j -1), it follows that

9. = max 11..i. 1 ~ 'no + (j -1 ) 82) ..1) JJ "') j
1=)+1, ...n

From (25) we have similarly:

IJj ~ Ibjjl +

Using these bounds with (27 and 28): .
0 ~ IJ.j ~ ITr max{8,lbjJ+G-l)BJ,TJj/Bj+G-l)Bj} -~

The choice of (27) ensures positive-definiteness 'with IJj = 1~, if 1~. > 0 and suffi-
ciently large. To avoid modification as far as possible, and keepJlJ.j s~all when mod-
ification is necessary, we need to choose Bj as large as possible. Formula (25) for an
unmodified matrix implies that each

IJk ~ bjj k = 1,2, ..., j-l

and if

82 ~ max {Ibjjl : j = 1,2, ..., n}

we have Ifk ~ 82 automatically and no modification will be necessary. The final
choice of 8 is

62 = max {8 , 'Y , T] / n }

where 'Y and T] are the largest in modulus of the diagonal and the off-diagonal ele-
ments of Br respectively. Condition (27) combined with the choice

6j = 6 = max {8 , 'Y , T] / n}

will give a larger lower bound than 8.
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The algorithm for finding a positive definite matrix Br = Br + I-Lr I can be stated as
follows:

1) IfB has any negative diagonal elements or the absolute value of the largest off-
diagonal element of B is greater than the largest diagonal element of B, set
B = B + ~1 I, where ~1 > 0 is chosen so that the new diagonal is all positive, with the

ratio of its smallest to largest element;.. 8' and the ratio of its largest

element to the largest absolute off-diagonal is ~ 1 + 2 82 .

2) A perturbed Cholesky decomposition is performed on B. It results in B + E =
L L T, E a non-negative diagonal matrix that is implicitly added to B- during the de-
composition and contains one or more positive elements if B is not safely positive de-
finite. On output, 1J.2 contains the maximum elements of E, that is 1J.2 = max { ~j,j =

1, ...n}.

3) If ~2 = 0 (i.e. E = 0), then B = L L Tis safely positive definite and the algorithm
tem1inates, returning Band L. Otherwise, it calculates the number ~3 that must be
added to the diagonal of B to make (B + ~3 I) safely strictly diagonally d~minant.
Since both (B + jJ.2 I) and (B + ~3 I) are safely positive definite, it thencalcu~tes ~
= min{}L2, ~3},B = B + I.LI, calculates the CholeskydecompositionLLT'ofB, and
return Band L.

Results and Discussion

In this section we discuss further refinements of the algorithm proposed above to
accommodate practical calculations. -

The matrix G(x,~) which is approximated by the BFGS formula given in (24) is
also updated by two techniques:

i) The modification of the modified Cholesky Factorization,[7.s.U] given above,
and this will be called "Technique I"

ii) We follow Powell's recommendation [PoweW9.12), that will be called
"Technique II".

The Powell's recommendation is as follows:

In formula (24), if the condition,

Zr 'Yr > 0

can not be satisfied due to the negative curvature of the objective function, 'Yr is reo
placed by the vector

'Y; = Or 'Yr + (1- OJ Br Zr

where 6r is the parameter[13]
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1 if z; 'Yr ~ 0.2 (Z; Br z.)
Or =

0.8 Z} Br Zr

Z~ Br Zr -Z~ 'Yr
otherwise

The parameter Or is determined to satisfy the condition

Z~ 'Y; ~ 0.2 (Z~ Br ZJ .

The algorithm was tested for Bo = I and for

Bo = If(xo) + Ilg(Xo)/11 .I

where I is the unit matrix of order n, and 1.1 is the modulus of the sum of the function
and the Euclidean norm of constraints evaluated at Xo

We now give certain examples to apply the algorithm for the two cases:

Case I

Equality constrained problem.

Example
Minimize the function[14]

f(x) = Xl X2 X3 X4 Xs

subject to the constraints

X2 + X2 + X2 + X2 + X2 -10 -0l234S -,

X2 X3 -5 Xl X 4 = 0,

x~+~+1=0.
Tables (1), (2) and (3) show the results for this problem, where r indicates the iter-

ationnumber, Xl , ..., Xs are the elements of the vector Xc (the current point), f = f

(xJ is the function, and Ilg(xJII is the Euclidean norm of constraints evaluated at Xc-

Table (1) shows the solution for the initial point (-1,1,1,-1, -1) where we selected
Bo = I. Table (1) up: shows the result, using Technique I, while Table (1) down:
shows it using Technique II.

Table (2) shows the solution for the initial point (-1, 1, 1, -1, -1.5), where we
selected Bo = If(xo) + Ilg(Xo)111 .I for both techniques (Table 2 up: Technique I;
Down: Technique II).

We note that the matrix Br was not positive definite at r = 1 (indicated by the as-
terisk) and was then modified by the corresponding technique to have the next cur-
rent point.
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TABLE 1. up: Technique I,
down: Technique II

with Bn = I

iter
r r Ilg(x.)11XI Xl X3 ~ Xs

0
1.
2
3
4
5
6
7
8
9

1.0
1.776486
1.593748
1.598701
1.596221
1.595468
1.595824
1.595656
1.595735
1.595698

1.0 -1.0 -1.0 ':'1.0 6.480740698
2.048665 -0.782515 -2.109819 -4.701791 4.155117801
1.833541 -0.75971 -1.771703 -2.988781 0.55012577
1.821861 -0.763248 -1.721225 -9.920459 0.0135756
1..826421 -0.7635959 -1.717594 -2.919733 5.71386001E-O5
1.827634 -0.763667 -1.716935 -2.919702 2.716628E-06
1.827063 -0.763632 -1.717242 -2.919701 6.0030368E-O7
1.827332 -0.763648 -1.717097 -2.9197011.3464468E-O7
1.827205 -0.763641 -1.717166 -2.919700 2.9374785E-08
1.827265 -0.763644 -1.717113 -2.919700 7. 1223451E-09

-1..0
-0.782515

-0.759671

-0.763248

-0.763596

-0.763667
-0.763632

-0.763648
-0.763641

-0.763644

0
1-
2
3
4
5
6
7
8
9

10
11
12

-1.0
-{}.782515
-{}.764827
-{}.7615246
-{}.772533

-{}.763004

-{}.764787
-{}.763293
-{}.763850
-{}.763551
-{}.763686

-{}.763627
-{}.763638

1.0
1.776485
1.533736
1.682428
1.56(XKi5
1.616181
1.586919
1.600038
1.593707
1.596663
1.595262
1.595921
1.595610

1.0
2 .048665
1.925459
1.703842
1.897210
1.797335
1.842042
1.820450
1.830473
1.825723
1.827966
1.826907
1.827406

-1.0 -1.0 6.480740698
-2.109819 -4.701791 4.155117801
-1.729156 -2.987070 0.604302913
-1.783456 -2.964804 0.120895158
-1.683949 -2.974551 0.070491933
-1.734668 -2.933522 0.01708~7
-1.709465 -2.922773 0.00383146
-1.720866 -2.920378 8.410527E-04
-1.715410 -2.919851 1.873000E-04
-1.717966 -2.919734 4. 167593E-05
-1.716757 -2.919708 9.272739E-06
-1.717326 -2.919700 2.060767E-06
-1.717057 -2.919700 4.55568E-07

TABLE 2. up: Technique I,
down: Technique II.

with Do = If(xo) + Ilg(xo)lll. I

iter
r

f Ilg(xr)11XI Xz X3 ~ Xs

0 -1.0
-O.79<XXi2
-0.774225
-0.766745
-0.763835
-0.763588
-0.763670
-0.763631
-0.763649
-0.763640
-0.763644

1.0
2.049713
1.677623
1.583584
1.594395
1.596304
1.595433
1.595841
1.595648
1.595739
1.5956%

1.0 -1.0 -1.5 -1.5 5.6527~5
1.85(1X1} -{J.7~2 -1.762835 -4.174578 4.6335946
1.797606 -{J.774225 -1.703145 -3.078755 0.7948358
1.852772 -{J.766745 -1.701676 -2.935227 0.0456123
1.829487 -{J.763835 -1.716065 -2.920504 0.0010581
1.8262955 -{J.763588 -1.717656 -2.919715 1.8225101E.05
1.827691 -{J.763670 -1.716904 -2.919103 3.589456E~
1.827036 ~.763631 -1.717257 -2.919701 7.894632E-07
1.827345 -{J.763649 -1.717~ -2.919701 1.749312E-07
1.827199 -{J.763640 -1.717169 -2.919700 3.9510649E-08
1.827268 -{J.763644 -1.717132 -2.919700 8.905773E-09

2
3
4
5
6
7
8
9

10

-1.0
~.782515
~. 764827
~.761525
~.772533
~. 763004
~. 764487
~~763293
~.763850
~.763555
~. 763688
~.763619
~. 763668
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iter
r

f Ilg(x.)11XI XI ~ Xs

-1.0 -1.5 -1.5 5.6527095
-{I.790062 -1.762835 -4.174578 4.6335946
-{I.787749 -1.645451 -3.152304 0.9343125
-{I.764252 -1.715895 -2.926449 0.0192923
-{I.763593 -1.717665 -2.919788 1.0934702E-04
-{I.763667 -1.716930 -2.919703 3.434885E-06
-{I.763632 -1.717244 -2.919701 6.269344E-07
-{I.763648 -1.717096 -2.919701 1.3886597E-07
-{I.763641 -1.717167 -2.919700 3.1289974E-OB
-{I.763644 -1.717133 -2.919700 6.994948E-09
-{I.76343 -1.717149 -2.919700 1.39671042E-09

0
1.
2
3
4
5
6
7
8
9
10

-1.0
-0.79006
-0.787749
-0.764252
-0.763593
-0.763667
-0.763632
-0.763648
-0.763641
-0.763644
-0.763643

1.0
2.049713
1.634949
1.592170
1.596322
1.595463
1.595826
1.595655
1.595736
1.595697
1.595716

1.0
1.850909
1.888268
1.833953
1.826285
1.827643
1.827059
1.827344
1.827204
1.827265
1.827237

TABLE 3. Technique II, Bo = I

Ilg(x.)11fXl X3 ~ XsXI

-1.0 -1.5 -1.5
-{J.796529 -1.711102 -4.264811
-{J.788279 -1.574045 -3.042657

-{J.764460 -1.782437 -3.008636

-{J.768515 -1.694284 -2.944246
-{J.762995 -1.728900 -2.92668

-{J.764373 -1.711810 -2.921146

-1.763389 -1.719708 -2.920023
-{J.763783 -1.715914 -2.91m2
-{J.763582 -1.717712 -2.919716

-{J.763673 -1.716876 -2.919704
-{J.763631 -1.717270 -2.919701

-{J.763644 -1.717084 -2.919701

-{J.763620 -1.717172 -2.919700

5.6527095
3.8953451
0.7662572
0.2052846
0.0336552
0.008598
0.0018064
4.010699E-Q4
8.937683E-05
1.989133E-O5
4.42576E-06
9.848276E-O7
2.192526E-07
4.945792E-O8

1.0
1.933312
1.539120
1.652087
1.568253
1.609554
1.589582
1.598687
1.594323
1.596368
1.595400
1.595856
1.595641
1.595743

1.0
2.031977
2.021176
1.748291
1.876148
1.806578
1.837403
1.822539
1.829486
1.826193
1.827743
1.827011
1.827356
1.827193

-1.0
-0.7%529
-0.788279
-0.764460
-0.768515
-0.762995
-0.764373
-0.763389
-0.763783
-0.763582
-0.763674
-0.763628
-0.763656
-0.763620

12
13

Table (3) shows the solution for the same initial point as in Table (2), where Bo =

I, using Technique II.

By comparing Table (2) down and Table (3), we note that the number of iterations
required to have the solution with high accuracy is decreased when using Bo = If(Xo)
+ Ilg(xo)111 .I. The same result was obtained using Technique I.

In the following we give some refinements concerning the application of the al-
gorithm to inequality constrained problems.

The relation (16) gives incorrect values of (Yr+Ji Vi when (Yrh approaches zero.
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The numerical experimentation showed that the best choice of (Yr+lh is the follow-
rng:

(Yr+Ji = V- 2gi (XJ if gj (xJ < 0 (30)
and

(Yr+Vi = V2~ if gi (xJ ~ 0

where i = m + 1, ..., p

The choice of Yr+1 given by (30) will make the algorithm less sensitive to poor val-
ues of (yJi'

In addition the algorithm forces (Yr+Vs = 0

where & (XJ = max (gj (XJ > 0), i = m + 1, ,.. , p

We cannot guarantee that when we have gi (xJ > 0, the choice of (Yr+Vi = 0, Vi,
leads to the required solution of the problem.

The matrix (AT 0-1 A -1\-1 y2) in relation (13) may not be positive definite when
one or more of the (AJi, i = m + 1, ..., p, are positive. To maintain positive definite-
ness of this matrix we replace every component i of the diagonal matrix 1\-1 y2, given

2 2
as (~)i by (L lr i)i ' i = m + 1, .., P

Ar -AJ

Case II

We now show the behaViour of the algorithm on examples of nonlinear optimiza-
tion problems having inequality constraints.

We now show the behaviour of the atgorithm, on a simple example. A BASIC test
program was written and applied to the problem.

Minimize the function

f(x) = xi + 2 x~ X3 + 2 x:

Subject to
g\ (x) = X! + Xz + X~ -4 = 0

gz (x) = X! -Xz + 2 X3 -2 :s 0

Table (4) gives the values of XI' Xl, X3, of a slack variable Yz, of the multipliers AI
and Az, of the function f = f(XI, Xl, X3) and of the Euclidean norm of the constraints,
Ilg(xJ, at r = 0,1,2 ...
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TABLE 4. Technique II, (Yl = 0 since gl (x) = 0)
up: Bo = If(Xo) +lIg(xo)111 .I
down: Bo = I

iter
r

Ilg(x.)11rA.. XIY:XI X3XI

4.4721360
9
1.2656155
0.04844707
8.3327046E-05
7.6413742E-Q9
5.1511994E-~

0.0
25.5968
11.9990
3.6431
4.2105
4.2218
4.2218

0.0 O.
7.7082 102
0.5603 15.23433

-2.6585 8.987812
-4.2750 8.781994
-4.2801 8.781660
-4.2801 8.781660

0.0
3.0
1.874998
1.654891
1.645768
1.645751
1.645751

0.0
0 .(XXKX)

0 .(XXKX)

0.00190
0 .(XXKX)
0 .(XXKX)

0 .<XXXI6

0.0
0.0
0.0
0.0
0.0
0.0
0.0

0.0
4.0
1.749998
1.309782
1.291532
1.291503
1.291503

0
1
2
3
4
5
6

4.4721360
7.5790109
1.136436
0.0090675
2.5662748
0.198378
0.001366
6.2018629E-OS
6.8981446E-09
7.1635815E-09

0.0
25.0378
12.8890
3.0923

-0.1658
3.7972
4.0893
4.2218
4.2218
4.2218

0.0 0.0
7.1492 93.5
0.0356 17.22937

-{J.0179 8.806900
-{J.0543 4.637609
-5.3707 9.646309
-4.2864 8.787431
-4.2801 8.781660
-4.2801 8.781660
-4.2801 8.781660

1.0
1.0
1.0
1.0049
0.0
0.0
0.00005
0 .00000
0.00005
o. 00000

0.0
2.750
1.741002
1.647891
2.128376
1.682979
1.646010
1.645751
1.645751
1.645751

0
1
2
3
4
5
6
7
8
9

0.0 0.0
0.0 4.0
0.0 1.986987
0.0 1.297891
0.0 --0.299118
0.0 1.365959
0.0 1.292019
0.0 1.291503
0.0 1.291503
0.0 1.291503

Table (4), up: shows the results, where

Bo = If(xo) + Ilg(Xo)111 .I

Table (4), down: shows the results, where

Bo = I,

I is the unit matrix of order n.

The algorithm was also applied to Rosen-Suzuki Problem[13],

The matrix Bo is selected to be

Bo = If(xo) + IIg(xo)111 .I

f(x) = xi + x~ + 2x~ + x~-5 xl-5 x2-21 X3 + 7 X4

Subject to
gl (x) = xi + ~ + xj + X~ + Xl -X2 + X3 -~ -8:5 0 ,

g2 (x) == xi + 2 ~ + xj + 2 x~ -X I ,- ~ -10 :5 0 ,

g3 (x) = 2 xi + x~ + xj + 2 XI- X2 -X4 -5:5 0

The problem is:

Minimize the function



A Numerical Algorithm for Solving Constrained. lR"'

wherex. = (0,1,2,-1)andf(x.) =-44

Tables (5) and (6) show the solution for the initial point (0,0,0,0,
VI6 , V2"O , VIO ) .

TABLE 5. Technique I,
Bo = If(Xo) + IIg(Xo)111

0
l'
2
3
4
5
6
7
8
9

10
11
12
14
17

0
0.2~57
0.168968

-0.043453
0.21!XJ37

-0.105412
0.12{Xm
0.309217
0.0281~

-0.005525
-0.000056
-O.!KXJ470
O. mJ861

-0.000126
0.000003

0
0.872872
0.826310
0.794579
0.950505
0.758823
O.~
1.159072
0.891998
0.956735
1.003201
0.999212
1.000582
0.999831
1. 000077

0
0.2~57
0.515102
2.738494
3.000186
2.103292
2.056588
2.!ki4798
2.073131
2.018494
1.999838
2.000565
2.000305
2.000138
1.999976

0 Yi6
-O.~57 4.
-0.465481 3.7374
-1.591991 3.(JX1)
-1.5~3 0.0
-1.248170 0.0
-0.942685 0.0
-0.717407 0.0
-0.%9846 0.0
-0.987516 0.0
-1.<MXJ118 0.0
-0.999483 0.0
-O.mJI0 0.0
-0.999868 0.0
-1.!XXXJ14 0.0

V2O"
4.4721
4.0342
3.!HJ15
3.3204
3.7955
0.3347
1.7356
1.7416
1.6045
1.5176
1.4051
1.4163
1.4163
1.4147

\fiij
3.1623
2.8228
2.8347
2.7752
3 .4834
0.7751
0.0
0.0
0.0
0.0
0.0717
0.0058
0.0
0.0

0
-12.8654

-17.5932

-54.2644

-58.4579

-45,1809
-44.7419

-45.2435

-44.4928
-44.0178

-44.0078

-44. (XKX)
-44.0051

-44. (XKX)
-44. (XKX)

13.7477
11.439899
10.774924
9.13(KKi7

12.54W73
1.1m245
1.55730
1.mJ37
1.324838
1.151626
0.987189
1.003007
1. 002260

1.000656
11999724

TABLE 6. Technique II,
Bo = If(Xo) + Ijg(Xo)111

iter
r Ilg(Ir)111XI XI X3 ~ Y. Y1 Y3

0.0 VI6
-O.2~57 4.0000
-0.133672 3.7374
-0.312471 2.9806
-0.429753 0.0
-0.672923 0.0
-1.246395 0.0
-0.923538 1.2882
-1.191543 0.0
-0.904652 0.0
-0.953743 0.0
-0.994821 0.0
-1.003489 0.0
-0.986850 0.0
-1.001312 0.0
-0.997951 0.0
-1.fXXX1)7 0.0

vw
4.4721
4.0342
3.5424
1.5SW
1.2244
1.0457
0.0
1.1507
0.5707
1.4239
1.2375
1.4812
1.3791
1.4475
1.4097
1.4187

0
I'
2
3
4
5
6
7
8
9

10
11
12
13
14
15
18

0.0
-O.2~57
0.227057
0.463250
0.056752

-O.2W451
-0.107105
-0.114579
-0.041300
-O.033m
0.023261
0.001857
0.002199
0.003252
0.002902

-0.000162
0.000293

0.0
0.2~57
1.342288
2.216928
3.~950
2.369861
1.877370
2.149807
2.032260
2.072073
2.<KXJ831
2.013420
1.995288
2.007843
1.998196
2.003934
1.999756

\ffij
3.1623
2.8228
2.2467
0.0
3.1241
0.0
0.7835
0.8150
0.6812
0.0
0.0
0.2102
0.0677
0.0
0.0
0.0

0.0
0.872872
0.9821Xi9
1. 346OOJ
0.461095
1.001272
1.495515
0.989740
0.989593
1.028681
1.113711
0.968718
1.013053
0.997410
1.002489
0.986744
1. (XKki46

0
-12.8654

-30.5384

-45.8355
-51.0335
-45.7049
-44.1916
-44.8975
-45.~5
-44.3559
-44.2213
-44.0626
-44.0061
-44.0444

-44.0051
-44.0001
-44.0007

13.7477
11.439899
8.WI270
2.4724919
7.())7985
1.454993
2.6103846
0.859676
0.m2435
1.0302519
0.m0819
I.W74758
0.9510014
1.047794
0.993577
1.046997
0.998206
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Table (5) shows the result using technique I, where the solution is obtained for less
than 17 iterations.

Table (6) shows the result using the technique II, where the solution is obtained for
more than 18 iterations.

The value of A is (-0.9999, -1. 796E-09, -2.0000).

At the solution, we have

x. = (0,1,2,-1), Y = (0, V2 ,0),f=-44,llg{x.)II= 1

We note that the negative sign ofA2 of Table (4) and that for At, A2, A3, of the last
example is due to the selection of positive sign of the second term of the right hand
side of the equation of the Lagrangian function (3).

We note also that in Tables (5) and (6), the asterisk indicates that the matrix B., at
r = 1 is indefinite. The calculated eigenvalues shows that they lie in the range -82.96
to 41.75. The matrix B was then modified by the corresponding technique to have the
next current point.

The proposed algorithm may be useful for solving constrained optimization prob-
lems that use Lagrangian functions. It does not suffer from the increased dimension,
numerical instability and presence of singularities caused by the presence of slack
variables in inequality problems. It maintains the positive definiteness at each itera-
tion and the selection of Bo, in BFGS formula, to be the modulus of the sum of the
function and the Euclidean norm of constraints may be useful for acceleration of con-
vergence, and for convergence from initial points that are far from the solution.
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