TABLE OF CONTENTS

Acknowledgement	i
Abstract	ii
Arabic Abstract	iv
Table of contents	vi
List of Tables	xiii
List of Figure	xiv
CHAPTER I: Introduction	1
1-1.Introduction	1
CHAPTER II: Basic Topics	4
2-1 Basic topics and number theory	4
2-1-1 Continued fraction	4
2-1-2 Top- Down Continued Fraction Evaluation	4
2-2 Basic topics from space dynamics	6
2-2-1 Initial value problems	6
2-2-2 Basic relations between position and time	6
2-2-3 Two- body formulation	7
2-2-4 Lagrange's fundamental invariants	9
2-2-5 Universal formulations for conic orbits	12
Importance of the universal formulations	12
Formulations	12

Time transformation formula	13
• The new family of transcendental functions	14
2-2-6 orbital parameter in terms of U's function	16
• σ in terms of the U's functions	16
• r in terms of the U's functions	17
Universal Kepler's equation	18
Lagrangian coefficients	19
CHAPTER III: Geometry of the Boundary-Value Problem	23
3-1 Introduction	23
3-2 Terminal Velocity Vectors	24
3-3 Polar coordinates of the terminal velocity vectors	25
3-3-1 The radial component ^V ^r	25
3-3-2 The circumferential component v_{γ}	27
3-3-3 Some relations between the terminal components of the velocity	27
vectors	
3-3-4 Corollaries	29
3-4 Chordal and radial coordinates of the terminal velocity vectors	30
3-5 Relation between the two coordinates	33
3-6 Minimum – energy orbit	35
3-6-1 Semi-major axis a_m of the minimum –energy orbit	36
3-6-2 The location of F_m^* on the chord c	37
3-6-3 Parameter p _m of the minimum-energy Orbit	38
3-6-4 Eccentricity e _m of the minimum-energy orbit	40
3-6-5 The eccentricity vector e _m of the minimum-energy orbit	41
3-7 The fundamental ellipse	43

3-7-1 The set of the eccentricity vectors	43
3-7-2 The eccentricity vector $\mathbf{e}_{\mathbf{F}}$	44
3-7-3 Parabolic eccentricity vectors and the fundamental ellipse	45
3-7-4 The semi major axis a_F , the eccentricity e_F and the parameter p_F of	
the fundamental Ellipse	46
3-8 The distance FR	47
3-9 Orbit tangents and the transfer-angle bisector	50
3-9-1 Fundamental relationship – geometrical approach	50
3-9-2 The length of the distance FN	51
3-9-3 Expressions for different conic orbits	54
3-10 Parameter of the orbit	57
3-10-1 Parameter in terms of velocity components ratio	57
3-10-2. Parameter in terms of flight-direction angle	57
3-10-3 Parameter in terms of eccentric anomaly difference	61
CHAPTER IV: Lambert Equations	68
4-1 Lambert's Equation for Elliptic orbits	69
4-1-1 Determination of the signs for $\sin\begin{pmatrix}\epsilon\\-\\2\end{pmatrix}$, $\cos\begin{pmatrix}\epsilon\\-\\2\end{pmatrix}$ and $\sin\begin{pmatrix}\delta\\-\\2\end{pmatrix}$, $\cos\begin{pmatrix}\delta\\-\\2\end{pmatrix}$	72
• The sign of $\sin \frac{\varepsilon}{2}$ and $\cos \frac{\delta}{2}$	72
• The signs of $\cos \frac{\varepsilon}{2}$ and $\sin \frac{\delta}{2}$	73
• The equation of the chord P_1P_2 referred to x y axes	73
• The length OS=s	74
• The distance F_1S and F_2S and PS	75

• The ratios F_1S/PS and F_2S/PS	75
• Sign Rules for $\cos \frac{\varepsilon}{2}$ and $\sin \frac{\delta}{2}$	76
4-1-2 The time of flight for the four different cases	81
• A does not include F_1 and F_2	83
• A does not include F ₁ but includes F ₂	83
• A includes F ₁ but not F ₂	84
• A includes both F_1 and F_2	84
4-1-3 Practical form of Lambert's equation	85
• On the function $Q(\theta)$	86
Hypergeometric series	86
• First set of expressions	86
• Q as a function of x	87
Differential equation for Q	87
Integral Expression of Q	87
Series Expression of Q.	88
Another analytical expression of Q	90
Second set of expressions	91
• Q as a function of x [*]	92
Differential Equation of Q	93
Integral Expression of Q	94
Series Expression of Q	94
Analytical expression of Q	95
4-2 Lambert's theorem for hyperbolic motions	95
Functional Relations	95

The branches of hyperbolic orbit	96
4-2-1 Basic Equation of Lambert's theorem along the concave branch	97
• The Signs of $\sinh \frac{\varepsilon}{2}$ and $\sinh \frac{\delta}{2}$	99
• The Equation of the chord P_1P_2 referred to Fx and Fy axes	100
• The Length OS=s	100
• The value of A=s+ea	100
Practical Form	103
4-2-2 Basic Equation of Lambert's theorem along the convex branch	105
• The Signs of $\sinh \frac{\varepsilon}{2}$ and $\sinh \frac{\delta}{2}$	107
• Equation of the cord P_1P_2 referred to F^*x and F^*y axes	107
• The Length OS=s	108
• The value of A=s-ea	108
Practical Form	110
4-3 Euler's equation for parabolic orbits	113
CHAPTER V: Solving Lambert Problem	116
5-1 Introduction	116
5-2 Methods for elliptic orbits	116
5-2-1Gauss's method for elliptic motion	116
Some basic formulae	117
• The ratio of the area of the sector to the area of the triangle	117
• Formulations	117
Computational forms of the equations	123

• Aitken's delta process for solving Equations (5-35) and (5-36)	125
• Determination of v ₁	125
Computational developments	127
Computational Algorithm RSTT	128
Computational Algorithm Qv	129
Computational Algorithm FGS	129
5-2-2 Method 2 for elliptic orbits	130
• Iterative solution for the semimajor axis	130
• Newton- Raphson scheme for Equation (5-45)	131
• The quantities ξ,η,ζ	132
• The f and \mathbf{g}_1 functions	134
5-3 Universal Lambert problem	135
5-3-1 Linear terminal velocity constrain	135
• f and g functions	135
• The initial velocity vector \mathbf{v}_1	136
Computational algorithm	137
Numerical examples	138
5-3-2 Lambert universal variable algorithm	138
• Universal formulation of the two-body problem	139
Universal Lambert Problem	141
Computational developments	142
• Computations of Stumpff's Functions $C_2(\psi)$ and $C_3(\psi)$	142
Computational Algorithm 1	143
Computational Algorithm 2	144
Implementing the Universal Lambert Problem	145

Computational Algorithm 3	146
• Comments	147
Numerical Applications	148
5-3-3 Algorithme for Battin's method of the universal Lambert	151
Problem	
Basic Formulations	151
Two-body formulations	151
Basic equations of Lambert's problem	154
Battin's Method	156
Analytical developments	156
Computational developments	159
Top-Down continued Fraction Evaluation	159
Solving the Cubic	159
• Computational Form of the Continued Fraction $\xi(\chi)$	161
Implementing Battin's method	161
Computational Algorithm 1	161
Numerical Applications	166
CHAPTER VI: Conclusions	171
Conclusions	171
List of References	174
شکر وتقدیر	ĺ
الملخص	ب

LIST OF TABLES

.

Table 4- 1: Sign rules for $\cos \frac{\varepsilon}{2}$ and $\sin \frac{\delta}{2}$	76
Table 5-1: Position Vectors for the Test orbits	149
Table 5-2: The Initial Limits of ψ and the Final values of B , $\chi~$, and $\psi_{1,\ldots,\ldots}$	149
Table 5- 3: Solution of the Universal lambert Problem for the Velocity Vectors v_1 and v_2	149
Table 5-4 : components of the positive vectors for the Test cases	167
Table 5-5 : orbital analysis of case 1	168
Table 5-6: orbital analysis of case 2	169

LISTOFFIGURES

Fig. 3-1: Geometry of the boundary-value problem	24
Fig. 3-2: Chordal and radial components of terminal velocity vectors	30
Fig. 3-3 Velocity components of the velocity vector \mathbf{v}_1	34
Fig.3-4 the location of F [*]	37
Fig. 3-5: Geometry of Minimum-Energy Ellipse	38
Fig.3-6: Locus of the eccentricity vectors	43
Fig. 3-7: Parabolic eccentricity vectors and the fundamental ellipse	45
Fig. 3-8: Fundamental ellipse	46
Fig. 3-9: Tangent – bisector property	51
Fig. 3-10: flight-Direction Angle	57
Fig. 3-11: spacecraft arriving at a target planet	61
Fig4-1: Determination of the signs of $\cos\frac{\varepsilon}{2}$ and $\sin\frac{\delta}{2}$	73
Fig. 4-2 :The branches of hyperbolic orbit	96
Fig .4-3 : Geometry of concave branch	99
Fig 4-4 : The sign of $\sinh \frac{\delta}{2}$: A > 0	102
Fig 4-5: The sign of $\sinh \frac{\delta}{2}$: A $\prec 0$	102
Fig. 4-6 : Geometry of convex branch	107

Fig 4-7: The sign of $\sinh \frac{\delta}{2}$:A>0	109
Fig 4-8 : The sign of $\sinh \frac{\delta}{2}$: A<0	110
Fig. 5-1 Geometry of Gauss's method	116

Chapter I

1. Introduction

Lambert problem of space researches is concerned with the determination of an orbit from two position vectors and the time of flight(Danby 1988). It has very important applications in the areas of rendezvous, targeting, guidance (Noton 1998) and interplanetary missions(Eagle 1991).

Solutions to Lambert's problem abound in the literature, as they did even in Lambert's time shortly after his original formulation in 1716. Examples are Lambert's original geometric formulation, which provides equations to determine the minimum-energy orbit, and the original Gaussian formulation, which gives geometrical insight into the problem.

Up to the year 1965, a fairly comprehensive list of references on Lambert's problem are given in references (Escobal 1965), (Herrick 1971) and(Battin 1964). (Lancaster and Blanchard 1969) also(Mansfield 1989) established unified forms of Lambert's problem, (Gooding 1990) developed a procedure for the solution, and in (1995), (Thorne and Bain 1995) developed a direct solution using series inversion technique.Recently (Sharaf 2003) developed an algorithm for the universal Lambert's problem based on iterative scheme that could be made convrage for all coin motion.

Each of the above methods is characterized primarily by: (1) a particular form of the time of flight equation and, (2) a particular independent variable to be used in an iteration algorithm to determine the orbital elements.

One of the most compact and computational efficient form of Lambert's problem is that of Battin (cited in reference(Bond and Allman,1996). In this form, the time of flight equation is universal (i.e., includes elliptic, parabolic, and hyperbolic orbits) as a well-behaved function of a single, physically significant independent variable.

The present thesis is devoted for the study of the boundary value problem in its universal form, and it comprise two parts

In the first part, the properties of the orbital boundary value problem are presented including terminal velocity vectors with different coordinates and the minimum energy orbit with it's various orbital elements. The fundamental ellipse is discussed, together with the various forms of its parameters. All of these properties are proved mathematically and illustrated geometrically.

The second part of the thesis is devoted to the solution of Lambert problem for different conic sections .In this respect we considered :

- "Gauss Method": for elliptic orbits, the equations of the method together with the its computational algorithm are presented .
- "The iterative method" : for elliptic orbits ,by which the values of semi major axis and each Lagrange coefficients "f" and "g", are computed so as to determine the initial velocity v₁.

Also some methods for solving universal Lambert problem are discussed, including:

• "Linear terminal velocity constrain": for which, the basic equations, computational algorithms and some numerical applications are given.

- "Computational algorithms" to solve universal Lambert problem, and,the basic equations, some numerical applications are given.
- "Battin's method": for which the basic equations and computational algorithms are given in full details .In addition, we implement the method to compute the geometric characteristics of the boundary value problem (demonstrated in the first part). Finally we made use of these computedgeometric characteristics as criteria for accuracy checks of the calculations. The algorithms is applied to 14 orbits of different eccentricity ,the numerical results are extremely accurate.

Chapter II

Basic Topics

In this chapter, some topics will be given due to their important roles in the analysis of the subsequent chapters

2-1Basic topicsand number theory

2-1-1 Continued fraction

In fact, continued fraction expansions are, generally far more efficient tools for evaluating the classical functions than the more familiar infinite power series. Their convergence is typically faster and more extensive than the series. Due to the importance of accurate evaluations of the space orbital maneuvers and the efficiency of continued fractions, we purpose to use them as the computational tools for evaluating the included functions .

2-1-2 Top- Down Continued Fraction Evaluation

There are several methods available for the evaluation of continued fraction. Traditionally, the fraction was either computed from the bottom up, or the numerator and denominator of the nth convergent were accumulated separately with three-term recurrence formulae. The draw back of the first method is, obviously, having to decide far down the fraction to being in order to ensure convergence. The draw back to the second method is that the numerator and denominator rapidly overflow numerically even though their ratio tends to a well defined limit. Thus, it is clear that an algorithm that works from top down while avoiding numerical difficulties would be ideal from a programming standpoint .

Gautschi (1967) proposed very concise algorithm to evaluate continued fraction from the top down and may be summarized as follows. If the continued fraction is written as:

$$c = \frac{n_{1}}{d_{1} + \frac{n_{2}}{d_{2} + \frac{n_{3}}{d_{3} + \cdot \cdot}}}$$

then initialize the following parameters

$$a_1 = 1,$$

 $b_1 = n_1/d_1,$
 $c_1 = n_1/d_1$

and iterate (k=1,2,...) according to :

$$a_{k+1} = \frac{1}{1 + \left[\frac{n_{k+1}}{d_k d_{k+1}}\right] a_k}$$
$$b_{k+1} = [a_{k+1} - 1] b_k,$$
$$c_{k+1} = c_k + b_{k+1}.$$

In the limit, the c sequence converges to the value of the continued fraction.

Continued fraction method was used in many problems in astrophysics (e.g. Sharaf, 2006, Sharaf

et.al 2004) as well as in special functions of astrodynamics (e.g.Sharaf and Banajh

2001, Sharaf, and Najmuldeen, 2001).

2-2Basic topics from space dynamics

2-2-1 Initial value problems

The initial value problem is: Given initial conditions $\mathbf{r}_0 = \mathbf{r}(t_0)$ and $\mathbf{v}_0 = \mathbf{v}(t_0)$ for the position and velocity vectors at time t_0 , and given a second time t, find $\mathbf{r}(t)$ and $\mathbf{v}(t)$

2-2-2 Basic relations between position and time

The basic relations between position and time for the different conic sections as:

$$M = E - esinE \qquad ; e \prec 1 \quad \text{For elliptic orbits}$$
$$M = \tan^3 \frac{1}{2}f + 3\tan \frac{1}{2}f \qquad ; e = 1 \quad \text{For parabolic orbits}$$
$$M = esinhH - H \qquad ; e \succ 1 \text{For hyperbolic orbits}$$

The first equation is known as Keplar's equation, the second equation as Barker's equation, while the third equation is the hyperbolic form of Kepler's equation. The angle f is the true anomaly ,E and H are respectively ,the elliptic eccentric anomaly and the hyperbolic eccentric anomaly. The mean anomaly M is related to the time t for the respect orbits by:

$$M = \sqrt{\frac{\mu}{a^3}}(t - \tau),$$
$$M = 6\sqrt{\frac{\mu}{p^3}}(t - \tau),$$
$$M = \sqrt{\frac{\mu}{(-a)^3}}(t - \tau),$$

Where a, τ is time are respectively the semi-major axis of the orbit and the time of pericentre passeg, where p is, the semi-latus rectum of the orbit(or simply the parameter).

2-2-3 Two - body formulations

The equation describing the relative motion of the two bodies of masses m_1 and m_2 in rectangular coordinates is :

$$\frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = \ddot{\mathbf{r}} = -\frac{\mu}{r^3} \mathbf{r} , \qquad (2-1)$$

where μ is the gravitational parameter (universal gravitational constant times the sum of the two masses) **r** and **v** are the position and velocity vectors respectively ,given in components as :

$$\mathbf{r} = \mathbf{x} \mathbf{i}_{x} + \mathbf{y} \mathbf{i}_{y} + \mathbf{z} \mathbf{i}_{z},$$

$$\mathbf{v} = \dot{\mathbf{x}} \mathbf{i}_{\mathbf{x}} + \dot{\mathbf{y}} \mathbf{i}_{\mathbf{y}} + \dot{\mathbf{z}} \mathbf{i}_{\mathbf{z}},$$

 \mathbf{i}_x , \mathbf{i}_y , and \mathbf{i}_z are the unit vectors along the coordinate axes x, y and z respectively and $\mathbf{r} = (\mathbf{x}^2 + \mathbf{y}^2 + \mathbf{z}^2)^{1/2}$.

Equation (2-1) is unchanged if we replace \mathbf{r} with $-\mathbf{r}$. Thus Equation (2-1) gives the motion of the body of mass m_2 relative to the body of the mass m_1 , or the motion of m_1 relative to m_2 . Also if we replace t with -t, Equation (2-1) is unchanged.

At any time, \mathbf{r} and \mathbf{v} can be expressed as:

$$\mathbf{r} = \mathbf{L}\mathbf{i}_{\mathbf{e}} + \mathbf{T}\mathbf{i}_{\mathbf{p}},\tag{2-2}$$

$$\mathbf{v} = \dot{\mathbf{L}} \, \mathbf{i}_{e} + \dot{\mathbf{T}} \, \mathbf{i}_{p} \qquad , \quad (2-3)$$

where (L,T) are the pericentre coordinates of one of the bodies in its orbit about the other body and (\dot{L},\dot{T}) are their time derivatives. These coordinates are of different forms(Battin 1999) for the different types (elliptic, parabolic, hyperbolic) of the two body motion and are not needed to be specified here. The unit vectors \mathbf{i}_{e} , \mathbf{i}_{p} and \mathbf{i}_{h} are selected such that, \mathbf{i}_{e} and \mathbf{i}_{p} in the body's own orbital plane with \mathbf{i}_{e} in the direction of pericentre, while \mathbf{i}_{p} and \mathbf{i}_{h} are chosen to make the coordinate system right-handed.

Among the integrals of the two-body problem are the conservation of angular momentum vector \mathbf{h} where,

$$\mathbf{h} = \sqrt{\mu p} \ \mathbf{i}_{h} = \sqrt{\mu p} \ \left(\mathbf{i}_{e} \times \mathbf{i}_{p} \right) = \mathbf{r} \times \mathbf{v}$$
(2-4)

and the energy integral

$$\mathbf{v}^2 = \mu \left(\frac{2}{\mathbf{r}} - \frac{1}{\mathbf{a}}\right). \tag{2-5}$$

From Equations (2-2), (2-3) and (2-4) we get :

$$L\dot{T} - \dot{L}T = \sqrt{\mu p} . \qquad (2-6)$$

2-2-4 Lagrange's fundamental invariants

The basic equations governing the relative motion of two bodies are nonlinear [see Equation (2-1)] so that , priori , we should not expect closed form expressions for the position and velocity vectors \mathbf{r} and \mathbf{v} to exist as time dependent quantities. Under any circumstances, though, power series developments may be obtained. Indeed, the coefficients in Taylor series expansion :

$$\mathbf{r}(t) = \mathbf{r}_{0} + (t - t_{0}) \frac{d\mathbf{r}}{dt} \Big|_{0} + \frac{1}{2!} (t - t_{0})^{2} \frac{d^{2}\mathbf{r}}{dt^{2}} \Big|_{0} + \frac{1}{3!} (t - t_{0})^{3} \frac{d^{3}\mathbf{r}}{dt^{3}} \Big|_{0} + \dots$$

can be found from the Equation of motion (2-1) and its higher derivatives.

Successive differentiation of Equation (2-1) involves higher derivatives of the quantity μ/r^3 , a calculation that fortunately, can be expedited in a convenient and quite interesting manner. For, if we define :

$$\epsilon = \mu \ / \ r^3$$

Then

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = -3\frac{\mu}{\mathrm{r}^4}\frac{\mathrm{d}r}{\mathrm{d}t} = -3\varepsilon\frac{1}{\mathrm{r}}\frac{\mathrm{d}r}{\mathrm{d}t}$$

Now define

$$\lambda = \frac{1}{r} \frac{dr}{dt} = \dot{r} / r \, .$$

Since

$$<\mathbf{r},\mathbf{v}>=\mathbf{r}\dot{\mathbf{r}},$$

then λ could be written as:

$$\lambda = \frac{\dot{\mathbf{r}}}{\mathbf{r}} = \frac{1}{\mathbf{r}^2} < \mathbf{r}, \mathbf{v} > .$$

 $<\mathbf{r}, \ddot{\mathbf{r}}> = -\frac{\mu}{r^3} < \mathbf{r}, \mathbf{r}> = -\frac{\mu}{r^3}r^2 = -\frac{\mu}{r},$

since

$$<\mathbf{r},\mathbf{v}>\frac{\dot{\mathbf{r}}}{\mathbf{r}^3}=\frac{\dot{\mathbf{r}}^2}{\mathbf{r}^2}=\lambda^2,$$

then

$$\frac{d\lambda}{dt} = \frac{v^2}{r^2} - \frac{\mu}{r^3} - 2\lambda^2 = \frac{v^2}{r^2} - \varepsilon - 2\lambda^2.$$

Finally ,we define

$$\Psi = \frac{\mathbf{v}^2}{\mathbf{r}^2} = \frac{1}{\mathbf{r}^2} < \mathbf{v}, \mathbf{v} >,$$

so

$$\frac{d\Psi}{dt} = \frac{2}{r^2} < v, \dot{v} > -\frac{2v^2}{r^3}\dot{r} = \frac{2}{r^2} < \dot{r}, \ddot{r} > -\frac{2v^2}{r^3}\dot{r},$$

From Equation (2-1) we have:

$$\langle \dot{\mathbf{r}}, \ddot{\mathbf{r}} \rangle = -\frac{\mu}{r^3} \langle \mathbf{r}, \dot{\mathbf{r}} \rangle = -\frac{\mu}{r} \frac{1}{r^2} \langle \mathbf{r}, \mathbf{v} \rangle = -\frac{\mu}{r} \lambda,$$

also

then

$$\frac{\mathrm{d}\Psi}{\mathrm{d}t} = -\frac{2\,\mu\lambda}{r^3} - 2\,\Psi\,\lambda = -2\,\varepsilon\,\lambda - 2\,\Psi\,\lambda = -2\,\lambda\,(\varepsilon + \Psi)$$

 $\frac{v^2}{r^3} \dot{r} = \frac{v^2}{r^2} \frac{\dot{r}}{r} = \Psi \lambda$

The term *fundamental invariants* has been used for ε , λ , Ψ - they are "invariants" because they are independent of the selected coordinate system and "fundamental" because they form a closed set under the operation of time differentiation .Thus ,to calculate the various derivatives of the position vector **r**, we have successively differentiate :

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}t} = \mathbf{v} \qquad ; \qquad \frac{\mathrm{d}\mathbf{v}}{\mathrm{d}t} = -\varepsilon \mathbf{r}$$

using the relations:

$$\frac{\mathrm{d}\varepsilon}{\mathrm{d}t} = -3\varepsilon\lambda; \quad \frac{\mathrm{d}\lambda}{\mathrm{d}t} = \Psi - \varepsilon - 2\lambda^2; \quad \frac{\mathrm{d}\Psi}{\mathrm{d}t} = -2\lambda(\varepsilon + \Psi)$$

where the quantities ϵ, λ, Ψ are defined as:

$$\varepsilon = \mu / r^3$$
; $\lambda = \frac{1}{r^2} < \mathbf{r}, \mathbf{v} >$; $\Psi = \frac{1}{r^2} < \mathbf{v}, \mathbf{v} >$.

In this manner, we obtain:

 $\dot{\boldsymbol{r}}=\boldsymbol{v}$

 $\ddot{\mathbf{r}} = -\varepsilon \, \mathbf{r}$

 $\ddot{\mathbf{r}} = 3 \varepsilon \lambda - \varepsilon \mathbf{v}$

$$\mathbf{r}^{\mathbf{iv}} = (-15\varepsilon\lambda^2 + 3\varepsilon\Psi - 2\varepsilon^2)\mathbf{r} + 6\varepsilon\lambda\mathbf{v}$$

indicating that the position vector \mathbf{r} at any time t can be represented in terms of the

position and velocity vectors \mathbf{r}_0 and \mathbf{v}_0 at time t_0 in the form :

$$\mathbf{r}(t) = \mathbf{F}(t)\mathbf{r}_0 + \mathbf{G}(t)\dot{\mathbf{r}}_0 \tag{2-7-1}$$

$$\dot{\mathbf{r}}(t) = F_t(t)\mathbf{r}_0 + G_t(t)\dot{\mathbf{r}}_0$$
(2-7-2)

2-2-5 Universal formulations for conic orbits

Importance of the universal formulations

During space mission all types of the two body motion (elliptic,parabolic,or hyperbolic) appear. For examples the escape from the departure planet and the capture by the target planet involve hyperbolic orbits, while the intermediate stage of the mission commonly depicted as a heliocentric ellipse ,may also be heliocentric parabola or hyperbola. In addition, in some systems, the type of an orbit is occasionally changed by perturbing forces during finite interval of time. Thus far we have been obliged to use different functional representations for motion depending upon the energy state (elliptic, parabolic, or hyperbolic) and a simulation code must then contain branching to handle a switch from one state to another .In cases where this switching is not smooth, branching can occur many times during a single integration time-step causing some numerical "chatter". Consequently ,universal formulations are desperately needed so that ,orbit predictions will be free of the troubles ,since a single functional representation suffices to describe all possible states.

Formulations

It is convenient to write α for the reciprocal of the semi-major axis, so that :

$$\alpha \equiv \frac{1}{a} = \frac{2}{r} - \frac{v^2}{\mu} \ ,$$

where $\mathbf{r} = |\mathbf{r}|$ and $\mathbf{v} = |\dot{\mathbf{r}}|$. Depending on the sign of α , or the value of the eccentricity e, the type of the orbit is determined such as:

 $\alpha = \begin{cases} \succ 0 \text{ (or } e \prec 1) & \text{ for elliptic orbits,} \\ = 0 \text{ (or } e = 1) & \text{ for parabolic orbits,} \\ \prec 0 \text{ (or } e \succ 1) & \text{ for hyperbolic orbits.} \end{cases}$

Different formulations for various two body orbits can be unified by using :

A-time transformation formula,

B- new family of transcendental functions.

Each of these points will be considered as follows.

A-Time transformation formula

Regarding this point ,we shall use Sundman's (Battin 1999) time transformation defined by:

$$\sqrt{\mu} \frac{\mathrm{d}t}{\mathrm{d}\chi} = \mathrm{r},$$

where χ is to be considered as a new independent variable –a kind of *generalized anomaly*. For the initial time t₀ and a second time t, the variable χ can be related to the classical anomalies at these times by:

$$\chi = \begin{cases} \sqrt{a} \quad (E - E_0) & \text{if } \alpha \succ 0, \\ \sqrt{p} \left(\tan \frac{1}{2} f - \tan \frac{1}{2} f_0 \right) & \text{if } \alpha = 0, \\ \sqrt{-a} \left(H - H_0 \right) & \text{if } \alpha \prec 0. \end{cases}$$

It could be shown that (Battin 1999) :

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\chi} = \sigma = \frac{1}{\sqrt{\mu}} \langle \mathbf{r}, \mathbf{v} \rangle, \tag{2-8}$$

$$\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}\chi^2} = 1 - \alpha \, \mathbf{r} = \frac{\mathrm{d}\sigma}{\mathrm{d}\chi},\tag{2-9}$$

$$\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\chi} = \frac{\mathrm{r}}{\sqrt{\mu}}\,\mathbf{v},\tag{2-10}$$

$$\frac{\mathrm{d}^2 \mathbf{r}}{\mathrm{d}\chi^2} = \frac{\sigma}{\sqrt{\mu}} \mathbf{v} - \frac{1}{r} \mathbf{r}, \qquad (2-11)$$

$$\frac{d^2\sigma}{d\chi^2} + \alpha \,\sigma = 0, \qquad (2-12)$$

$$\frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}\chi^{3}} + \alpha \,\frac{\mathrm{d}\mathbf{r}}{\mathrm{d}\chi} = 0, \tag{2-13}$$

$$\frac{d^4t}{d\chi^4} + \alpha \frac{d^2t}{d\chi^2} = 0, \qquad (2-14)$$

$$\frac{\mathrm{d}^{3}\mathbf{r}}{\mathrm{d}\chi^{3}} + \alpha \frac{\mathrm{d} \mathbf{r}}{\mathrm{d}\chi} = \mathbf{0}.$$
 (2-15)

B- The new family of transcendental functions

Regarding the second point mentioned above ,we shall consider for the family of transcendental functions, those defined by:

$$U_{n}(\chi;\alpha) = \chi^{n} \sum_{k=0}^{\infty} (-1)^{k} \frac{(\alpha \chi^{2})^{k}}{(n+2k)!} , \qquad (2-16)$$

what concerns us in the subsequent analysis are the following relations satisfied by the U's functions:

$$U_n + \alpha U_{n+2} = \frac{\chi^n}{n!}$$
, (2-17)

$$\frac{d^{m+1}U_n}{d\chi^{m+1}} + \alpha \frac{d^{m-1}U_n}{d\chi^{m-1}} = 0; n = 0, 1, 2, \cdots, m, \qquad (2-18)$$

$$U_0(0) = 1$$
 ; $U_n(0) = 0$ $\forall n \ge 1$. (2-19)

The relations of the functions $U_j(\chi; \alpha)$ j = 0,1,2,3 to the elementary functions are given

as:

$$U_{0}(\chi;\alpha) = \begin{cases} 1 & \text{if } \alpha = 0, \\ \cos(\sqrt{\alpha}\chi) & \text{if } \alpha \succ 0, \\ \cosh(\sqrt{-\alpha}\chi) & \text{if } \alpha \prec 0. \end{cases}$$
(2-20)

$$U_{1}(\chi;\alpha) = \begin{cases} \chi & \text{if } \alpha = 0, \\ \sin\left(\sqrt{\alpha}\chi\right)/\sqrt{\alpha} & \text{if } \alpha \succ 0, \\ \sinh\left(\sqrt{-\alpha}\chi\right)/\sqrt{-\alpha} & \text{if } \alpha \prec 0. \end{cases}$$
(2-21)

$$U_{2}(\chi;\alpha) = \begin{cases} \frac{1}{2}\chi^{2} & \text{if } \alpha = 0, \\ \left[1 - \cos\left(\sqrt{\alpha}\chi\right)\right] / \alpha & \text{if } \alpha \succ 0, \\ \left[\cosh\left(\sqrt{-\alpha}\chi\right) - 1\right] / (-\alpha) & \text{if } \alpha \prec 0. \end{cases}$$
(2-22)

$$U_{3}(\chi;\alpha) = \begin{cases} \frac{1}{6}\chi^{3} & \text{if } \alpha = 0, \\ \left[\sqrt{\alpha}\chi - \sin\left(\sqrt{\alpha}\chi\right)\right] / \alpha\sqrt{\alpha} & \text{if } \alpha \succ 0, \\ \left[\sinh\left(\sqrt{-\alpha}\chi\right) - \sqrt{-\alpha}\chi\right] / (-\alpha\sqrt{-\alpha}) & \text{if } \alpha \prec 0. \end{cases}$$
(2-23)

The functions U_0, U_1, \cdots, U_n are linearly independent. Finally we have:

$$\frac{dU_n}{d\chi} = U_{n-1}$$
; $n = 1, 2, \cdots$ (2-24)

$$\frac{\mathrm{dU}_{0}}{\mathrm{d}\chi} = -\alpha \,\mathrm{U}_{1}.\tag{2-25}$$

2-2-6 Orbital parameters in terms of the U's functions

$I_{\text{-}}\sigma$ in terms of the $\mathrm{U}{}^{\prime}\mathrm{s}$ functions

Let m = 1 in Equation (2-15) we get :

$$\frac{d^2 U_n}{d\chi^2} + \alpha U_n = 0 \; ; \; n = 0,1 \; . \tag{2-26}$$

From this equation , Equation (2-12) and the fact act that U_0 and U_1 are linearly independent we

get:

$$\sigma = A_0 U_0 + A_1 U_1, \qquad (2-27)$$

where A's are constants.

From Equations (2-9),(2-19) and (2-27) we get at $\chi = 0$,

$$A_0 = \sigma_0$$
 . (2-28-1)

From Equations (2-19) and(2-27) we get on using Equations (2-24) and (2-25) that:

$$1 - \alpha r = -A_0 \alpha U_1 + A_1 U_0 \xrightarrow{\text{at } \chi = 0} A_1 = 1 - \alpha r_0.$$

$$(2-28-2)$$

From Equations (2-28) ,Equation (2-27) becomes :

$$\sigma = \sigma_0 \mathbf{U}_0 + (1 - \alpha \mathbf{r}_0) \mathbf{U}_1 , \qquad (2-29)$$

which is the required equation of σ in terms of the U's functions

II- r **in terms of the** U's **functions**

Let m = 2 in Equation (2-18) we get :

$$\frac{d^{3}U_{n}}{d\chi^{3}} + \alpha \frac{dU_{n}}{d\chi} = 0 ; n = 0, 1, 2.$$
(2-30)

From this equation ,Equation (2-13) and the fact act that U_0 , U_1 and U_2 are linearly independent we get:

$$\mathbf{r} = \mathbf{B}_0 \mathbf{U}_0 + \mathbf{B}_1 \mathbf{U}_1 + \mathbf{B}_2 \mathbf{U}_2, \qquad (2-31)$$

where B's are constants.

From Equations (2-19) and (2-31) we get at $\chi = 0$,

$$B_0 = r_0 . (2-32-1)$$

From Equations (2-8) and (2-31) we get on using Equations (2-24) and (2-25) that:

$$\sigma = -\mathbf{r}_0 \ \alpha \ \mathbf{U}_1 + \mathbf{B}_1 \mathbf{U}_0 + \mathbf{B}_2 \mathbf{U}_1 \xrightarrow{\text{at } \chi = 0} \mathbf{B}_1 = \sigma_0.$$

$$(2-32-2)$$

From Equations (2-9) and (2-31) we get on using Equations (2-24) and (2-25) that :

$$1 - \alpha r = -r_0 \alpha U_0 - \alpha B_1 U_1 + B_2 U_0 \xrightarrow{at \chi = 0}$$

 $1 - \alpha r_0 = -\alpha r_0 + B_2 \Longrightarrow$

$$B_2 = 1.$$
 (2-32-3)

From Equations (2-32), Equation (2-31) becomes :

$$\mathbf{r} = \mathbf{r}_0 \mathbf{U}_0 + \boldsymbol{\sigma}_0 \mathbf{U}_1 + \mathbf{U}_2, \tag{2-33}$$

which is the required equation of rin terms of the U's functions

III-Universal Kepler's equation

Let m = 3 in Equation (2-18) we get :

$$\frac{d^4 U_n}{d\chi^4} + \alpha \frac{d^2 U_n}{d\chi^2} = 0 ; n = 0,1,2,3 .$$

From this equation , Equation (2-14) and the fact act that U_0 , U_1 , U_2 and U_3 are linearly independent we can write :

$$\sqrt{\mu(t-t_0)} = \gamma_0 U_0 + \gamma_1 U_1 + \gamma_2 U_2 + \gamma_3 U_3, \qquad (2-34)$$

where γ 's are constants.

From Equations (2-19) and (2-34) we get at $\chi = 0$, or $t = t_0$

$$\gamma_0 = 0$$
 . (2-35-1)

From Sundman's and Equation (2-34) we get on using Equations (2-24) and (2-25) that:

$$\sqrt{\mu} \frac{dt}{d\chi} = r = -\gamma_0 \ \alpha U_1 + \gamma_1 U_0 + \gamma_2 U_1 + \gamma_3 U_2 \xrightarrow{at \ \chi = 0} \rightarrow$$
$$\gamma_1 = r_0. \tag{2-35-2}$$

From Equations (2-8) and 2-34) we get on using Equations (2-24) and (2-25) that :

$$\sqrt{\mu} \frac{d^2 t}{d\chi^2} = \frac{dr}{d\chi} = \sigma = -\gamma_0 \alpha U_0 - \gamma_1 \alpha U_1 + \gamma_2 U_0 + \gamma_3 U_1 \xrightarrow{\text{at } \chi = 0} \rightarrow$$

$$\sigma_0 = -\gamma_0 \alpha + \gamma_2 \Longrightarrow$$

$$\gamma_2 = \sigma_0 \quad . \tag{2-35-3}$$

From Equations (2-9) and (2-34) we get on using Equations (2-24) and (2-25) that :

$$\frac{d\sigma}{d\chi} = 1 - \alpha r = \gamma_0 \alpha^2 U_1 - \gamma_1 \alpha U_0 - \gamma_2 \alpha U_1 + \gamma_3 U_0 \xrightarrow{\text{at } \chi = 0} \rightarrow 1 - \alpha r_0 = -\gamma_1 \alpha + \gamma_3 \Longrightarrow$$

$$\gamma_3 = 1 . \qquad (2-35-4)$$

From Equations (2-35), Equation (2-34) becomes :

$$\sqrt{\mu}(t-t_0) = r_0 U_1 + \sigma_0 U_2 + U_3.$$
 (2-36)

This equation is the universal Kepler's equation

IV-Lagrangian coefficients

From Equations (2-30) , Equation (2-15) and the fact act that U_0 , U_1 and U_2 are linearly

independent we can write :

$$\mathbf{r} = \mathbf{a}_0 \mathbf{U}_0 + \mathbf{a}_1 \mathbf{U}_1 + \mathbf{a}_2 \mathbf{U}_2, \qquad (2-37)$$

where **a**'s are vector constants.

From Equations (2-19) and (2-37) we get at $\chi = 0$,

$$\mathbf{a}_0 = \mathbf{r}_0 \quad . \tag{2-38-1}$$

Differentiating Equation (2-37) and then using Equations (2-10), (2-24) and (2-25) we get :

$$\frac{\mathbf{r}}{\sqrt{\mu}}\mathbf{v} = -\alpha \mathbf{U}_1 \mathbf{a}_0 + \mathbf{a}_1 \mathbf{U}_0 + \mathbf{a}_2 \mathbf{U}_1, \qquad (2-39)$$

from which we get:

$$\mathbf{a}_1 = \frac{\mathbf{r}_0}{\sqrt{\mu}} \,\mathbf{v}_0 \ . \tag{2-38-2}$$

Differentiating Equation (2-37) twice and then using Equation (2-11) we get :

$$\frac{\sigma}{\sqrt{\mu}}\mathbf{v} - \frac{1}{r}\mathbf{r} = -\alpha U_0 \mathbf{a}_0 - \alpha U_1 \mathbf{a}_1 + U_0 \mathbf{a}_2 , \qquad (2-40)$$

from which we get:

$$\mathbf{a}_2 = \frac{\sigma_0}{\sqrt{\mu}} \mathbf{v}_0 - \frac{1}{\mathbf{r}_0} \mathbf{r}_0 + \alpha \, \mathbf{r}_0 \ . \tag{2-38-3}$$

Using Equations (2-38) into Equation (2-37) we get:

$$\mathbf{r} = \mathbf{r}_0 \mathbf{U}_0 + \frac{\mathbf{r}_0}{\sqrt{\mu}} \mathbf{v}_0 \mathbf{U}_1 + \mathbf{U}_2 \left(\frac{\sigma_0}{\sqrt{\mu}} \mathbf{v}_0 - \frac{1}{\mathbf{r}_0} \mathbf{r}_0 + \alpha \, \mathbf{r}_0 \right),$$

which can be written as :

$$\mathbf{r} = \mathbf{F} \, \mathbf{r}_0 + \mathbf{G} \, \mathbf{v}_0,$$

where

$$F = U_0 + \left(\alpha - \frac{1}{r_0}\right)U_2 = U_0 + \alpha U_2 - \frac{1}{r_0}U_2 \xrightarrow{\text{Using Equation(2-17) with n=0}}$$
$$F = 1 - \frac{1}{r_0}U_2,$$
$$G = \frac{r_0}{\sqrt{\mu}}U_1 + \frac{\sigma_0}{\sqrt{\mu}}U_2.$$

Now using Equations (2-38) into Equation (2-39) we get:

$$\mathbf{v} = \frac{\sqrt{\mu}}{r} \left\{ -\alpha \mathbf{U}_1 \mathbf{r}_0 + \frac{\mathbf{r}_0 \mathbf{U}_0}{\sqrt{\mu}} \mathbf{v}_0 + \mathbf{U}_1 \left(\frac{\sigma_0}{\sqrt{\mu}} \mathbf{v}_0 - \frac{1}{\mathbf{r}_0} \mathbf{r}_0 + \alpha \mathbf{r}_0 \right) \right\},\$$

which can be written as:

$$\mathbf{v} = F_t \mathbf{r}_0 + G_t \mathbf{v}_0,$$

where

$$\begin{aligned} F_{t} &= -\frac{\alpha U_{1}\sqrt{\mu}}{r} - \frac{\sqrt{\mu}}{rr_{0}} U_{1} + \frac{\alpha U_{1}\sqrt{\mu}}{r} = -\frac{\sqrt{\mu}}{rr_{0}} U_{1}, \\ G_{t} &= \frac{\sqrt{\mu}}{r} \left\{ \frac{r_{0}U_{0}}{\sqrt{\mu}} + \frac{U_{1}\sigma_{0}}{\sqrt{\mu}} \right\} = \frac{1}{r} \left\{ r_{0}U_{0} + U_{1}\sigma_{0} \right\} \xrightarrow{\text{Using Equation(2-33)}} \\ G_{t} &= 1 - \frac{1}{r} U_{2}. \end{aligned}$$

Now, collecting the above equations we get for the universal initial value problem ,the formulations:

$$\mathbf{r} = \mathbf{F}\mathbf{r}_0 + \mathbf{G}\mathbf{v}_0 \qquad \qquad ; \qquad \qquad \mathbf{v} = \mathbf{F}_t\mathbf{r}_0 + \mathbf{G}_t\mathbf{v}_0$$

F =
$$1 - \frac{1}{r_0} U_2$$
, ; $G = \frac{r_0}{\sqrt{\mu}} U_1 + \frac{\sigma_0}{\sqrt{\mu}} U_2$,

$$F_t = -\frac{\sqrt{\mu}}{rr_0}U_1$$
, ; $G_t = 1 - \frac{1}{r}U_2$,

$$\mathbf{r} = \mathbf{r}_0 \mathbf{U}_0 + \boldsymbol{\sigma}_0 \mathbf{U}_1 + \mathbf{U}_2.$$