Left Hopf Algebras and Self Duality

H. A. Shoaib and M. M. Al-Shomrani
Department of Mathematics
King Abdulaziz University, Jeddah
P. O. Box 80257, Jeddah 21589, Saudi Arabia
malshomrani@hotmail.com

Abstract

In this paper, we introduce the concept of a left bicrossproduct Hopf algebra associated to a factorization of a finite group X into a subgroup G and a subsemigroup M. Moreover, we show that for a left Hopf algebra $H=k M \bowtie k(G)$ associated to a factorization $X=G M$ of a group X into a subgroup G and a subsemigroup M with identity and left inverse property, there is a left Hopf algebra isomorphism $H \rightarrow H^{*}$ which sends basis elements to basis elements can be constructed from a factor-reversing isomorphism of $X=G M$ and vise versa.

Mathematics Subject Classification: 18D10; 16W30
Keywords: Bicrossproduct, left Hopf algebra, factorization of finite groups

1 Introduction

Bicrossproducts which are associated to a factorization of groups are essential in the field of non-commutative and non-cocommutative Hopf algebras. Bicrossproduct Hopf algebras have many applications in quantum mechanics and geometry and the interrelation between them (see [8]). These algebras and their dual were extensively studied in [1], [2], [4], [5] and [8].

In [4], Beggs, Gould and Majid showed that basis-preserving self-duality structures for the bicrossproduct Hopf algebras are in one-to-one correspondence with factor-reversing group isomorphisms.

In [6], Green, Nichols and Taft defined a left Hopf algebra to be a k bialgebra ($B, m, \Delta, \mu, \epsilon: k$) with a left antipode S, i.e., $S \in \operatorname{Hom}_{k}(B, B)$ and $S * i d=\mu \epsilon$.

In This paper, we generalize some results of [4] using this definition of left Hopf algebra in specific case. More specifically, we show that for a left

Hopf algebra $H=k M \bowtie k(G)$ associated to the factorization $X=G M$ of a group X into a subgroup G and a subsemigroup M with identity and left inverse property, where $k(G)$ is the Hopf algebra of function on G and $k M$ is the semigroup left Hopf algebra of M, there is a left Hopf algebra isomorphism $H \rightarrow H^{*}$ which sends basis elements to basis elements can be constructed from a factor-reversing isomorphism of $X=G M$. Conversely, we show that for a factorization $X=G M$ of a group X into a subgroup G and a subsemigroup M whit identity and a left inverse property, a factorreversing semigroup isomorphism of $X=G M$ can be obtained from a left Hopf algebra self-duality pairings $<,>: H \otimes H \rightarrow k$ on the left Hopf algebra $H=k M \bowtie \Delta(G)$.

2 Self-duality of bicrossproducts

Here we introduce the concept of bicrossproduct left Hopf algebras associated to factorization of a group into a subgroup and a subsemigroup with identity and a left inverse property. The left inverse for an element $m \in M$ will be denoted by m^{L}, if it exists. We need the following definitions:

Definition 2.1 let $X=G M$ be a factorization of a group into a subgroup G and a subsemigroup with identity and a left inverse property M. A bialgebra $H=k M \triangleright k(G)$ with basis $m \otimes \delta_{g}$ where m in a subsemigroup M and g in a subgroup G is called a left Hopf algebra if there is a one-sided antipode map S such that

$$
S\left(m \otimes \delta_{g}\right)=(m \triangleleft g)^{L} \otimes \delta_{(m \triangleright g)^{-1}}
$$

Definition 2.2 Let $X=G M$ be a group factorization. We define a semigroup isomorphism $\theta: X \rightarrow X$ to be factor-reversing if $\theta(G) \subset M$ and $\theta(M) \subset G$.

Now, let $X=G M$ be a group which factorizes into a subgroup G and a subsemigroup with identity M. Then M acts on G through the right action $\triangleright: M \times G \rightarrow G$ and G acts on M through the left action $\triangleleft: M \times G \rightarrow M$. These actions are defined by the unique factorization

$$
\begin{equation*}
m g=(m \triangleright g)(m \triangleleft g), \tag{1}
\end{equation*}
$$

where $m \in M$ and $g \in G$. According to [4], it is easy to show that these actions obeying the following conditions for all $m, m_{1} \in M$ and $g, g_{1} \in G$:

$$
\begin{equation*}
m \triangleleft e=m,(m \triangleleft g) \triangleleft g_{1}=m \triangleleft\left(g g_{1}\right) ; e \triangleleft g=e, \tag{2}
\end{equation*}
$$

$$
\begin{equation*}
\left(m m_{1}\right) \triangleleft g=\left(m \triangleleft\left(m_{1} \triangleright g\right)\right)\left(m_{1} \triangleleft g\right), \tag{3}
\end{equation*}
$$

$$
\begin{gather*}
e \triangleright g=g, m \triangleright\left(m_{1} \triangleright g\right)=\left(m m_{1}\right) \triangleright g ; m \triangleright e=e \tag{4}\\
m \triangleright\left(g g_{1}\right)=(m \triangleright g)\left((m \triangleleft g) \triangleright g_{1}\right) \tag{5}
\end{gather*}
$$

It can be seen that we can associate to this factorization a bicrossproduct bialgebra $H=k M \bowtie \Delta(G)$ with basis $m \otimes \delta_{g}$ where $m \in M$ and $g \in G$. The product, unit, coproduct and counit are defined as follows:

$$
\begin{gather*}
\left(m \otimes \delta_{g}\right)\left(m_{1} \otimes \delta_{g_{1}}\right)=\delta_{g, m_{1} \triangleright g_{1}}\left(m m_{1} \otimes \delta_{g_{1}}\right), \tag{6}\\
1_{H}=\sum_{g} e \otimes \delta_{g}, \tag{7}\\
\Delta\left(m \otimes \delta_{g}\right)=\sum_{x, y \in G: x y=g} m \otimes \delta_{x} \otimes(m \triangleleft x) \otimes \delta_{y}, \tag{8}\\
\epsilon_{H}\left(m \otimes \delta_{g}\right)=\delta_{g, e} . \tag{9}
\end{gather*}
$$

If M posses a left inverse m^{L} for each $m \in M$, then H becomes a left Hopf algebra and the antipode will be given by:

$$
\begin{equation*}
S\left(m \otimes \delta_{g}\right)=(m \triangleleft g)^{L} \otimes \delta_{(m \triangleright g)^{-1}} . \tag{10}
\end{equation*}
$$

Due to these formulas, it can be noted that $H=k M \bowtie \Delta(G)$ has the smash product algebra structure by the induced action of M and the smash coproduct coalgebra structure by the induced coaction of G.

In the symbol $H=k M \bowtie k(G), k M$ is the semigroup left Hopf algebra of the semigroup with identity and the left inverse property M. A basis of $k M$ is given by the elements of M, with multiplication given by the semigroup product in M, and comultiplication given by $\Delta m=m \otimes m$ for $m \in M$. Also, $k(G)$ is the Hopf algebra of functions on G with basis given by δ_{g} for $g \in G$. The product is just multiplication of functions, and the coproduct is

$$
\Delta \delta_{g}=\sum_{x, y \in G: x y=g} \delta_{x} \otimes \delta_{y}
$$

In addition, a dual bicrossproduct bialgebra $H^{*}=k(M) \bowtie k G$ can be defined with basis $\delta_{m} \otimes g$ where $m \in M$ and $g \in G$. The product, unit, coproduct and counit are defined as follows:

$$
\begin{gather*}
\left(\delta_{m} \otimes g\right)\left(\delta_{m_{1}} \otimes g_{1}\right)=\delta_{m \triangleleft g, m_{1}}\left(\delta_{m} \otimes g g_{1}\right), \tag{11}\\
1_{H^{*}}=\sum_{m} \delta_{m} \otimes e, \tag{12}\\
\Delta\left(\delta_{m} \otimes g\right)=\sum_{a, b \in M: a b=m} \delta_{a} \otimes(b \triangleright g) \otimes \delta_{b} \otimes g, \tag{13}\\
\epsilon_{H^{*}}\left(\delta_{m} \otimes g\right)=\delta_{m, e} . \tag{14}
\end{gather*}
$$

If M posses a left inverse m^{L} for each $m \in M$, then H^{*} becomes a left Hopf algebra and the antipode will be given by:

$$
\begin{equation*}
S\left(\delta_{m} \otimes g\right)=\delta_{(m \triangleleft g)^{L}} \otimes(m \triangleright g)^{-1} \tag{15}
\end{equation*}
$$

Proposition 2.3 For a left Hopf algebra $H=k M \triangleright 4(G)$ associated to a factorization $X=G M$ of a group X into a subgroup G and a subsemigroup M with identity and left inverse property, where $k(G)$ is the Hopf algebra of function on G and $k M$ is the semigroup left Hopf algebra of M, there is a left Hopf algebra isomorphism $H \rightarrow H^{*}$, which sends basis elements to basis elements, can be constructed from a factor-reversing isomorphism of $X=G M$.

Proof. We define a linear map $\widetilde{\theta}: H \rightarrow H^{*}$ by

$$
\begin{equation*}
\widetilde{\theta}\left(m \otimes \delta_{g}\right)=\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g) \tag{16}
\end{equation*}
$$

and verify that this is a left Hopf algebra isomorphism $\tilde{\theta}: k M \bowtie k(G) \rightarrow$ $k(M) \bowtie k G$ whenever θ is a semigroup isomorphism. Suppose that θ is a semigroup isomorphism. Then

$$
\begin{aligned}
\theta\left(m_{1} g_{1}\right) & =\theta\left(\left(m_{1} \triangleright g_{1}\right)\left(m_{1} \triangleleft g_{1}\right)\right) \\
& =\theta\left(m_{1} \triangleright g_{1}\right) \theta\left(m_{1} \triangleleft g_{1}\right),
\end{aligned}
$$

and

$$
\theta\left(m_{1} g_{1}\right)=\theta\left(m_{1}\right) \theta\left(g_{1}\right)
$$

The condition that these two expressions are the same is that, for all m_{1} and g_{1},

$$
\begin{aligned}
\theta\left(m_{1}\right) \theta\left(g_{1}\right) & =\theta\left(m_{1} \triangleright g_{1}\right) \theta\left(m_{1} \triangleleft g_{1}\right) \\
& =\left(\theta\left(m_{1} \triangleright g_{1}\right) \triangleright \theta\left(m_{1} \triangleleft g_{1}\right)\right)\left(\theta\left(m_{1} \triangleright g_{1}\right) \triangleleft \theta\left(m_{1} \triangleleft g_{1}\right)\right) .
\end{aligned}
$$

So, by the uniqueness of factorization, we get

$$
\begin{equation*}
\theta\left(m_{1}\right)=\theta\left(m_{1} \triangleright g_{1}\right) \triangleright \theta\left(m_{1} \triangleleft g_{1}\right), \tag{17}
\end{equation*}
$$

and

$$
\begin{equation*}
\theta\left(g_{1}\right)=\theta\left(m_{1} \triangleright g_{1}\right) \triangleleft \theta\left(m_{1} \triangleleft g_{1}\right) . \tag{18}
\end{equation*}
$$

Now, to prove that $\widetilde{\theta}$ is a left Hopf algebra isomorphism, we check the conditions for $\widetilde{\theta}$ to be an algebra isomorphism, i.e.,

$$
\widetilde{\theta}\left(\left(m \otimes \delta_{g}\right)\left(m_{1} \otimes \delta_{g_{1}}\right)\right)=\widetilde{\theta}\left(m \otimes \delta_{g}\right) \widetilde{\theta}\left(m_{1} \otimes \delta_{g_{1}}\right)
$$

which we do as follows:

$$
\begin{aligned}
\widetilde{\theta}\left(\left(m \otimes \delta_{g}\right)\left(m_{1} \otimes \delta_{g_{1}}\right)\right) & =\widetilde{\theta}\left(\delta_{g, m_{1} \triangleright g_{1}}\left(m m_{1} \otimes \delta_{g_{1}}\right)\right) \\
& =\delta_{g, m_{1} \triangleright g_{1}} \delta_{\theta\left(m m_{1} \triangleright g_{1}\right)} \otimes \theta\left(m m_{1} \triangleleft g_{1}\right) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
\widetilde{\theta}\left(m \otimes \delta_{g}\right) \widetilde{\theta}\left(m_{1} \otimes \delta_{g_{1}}\right) & =\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g)\right)\left(\delta_{\theta\left(m_{1} \triangleright g_{1}\right)} \otimes \theta\left(m_{1} \triangleleft g_{1}\right)\right) \\
& =\delta_{\theta(m \triangleright g) \triangleleft \theta(m \triangleleft g), \theta\left(m_{1} \triangleright g_{1}\right)}\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g) \theta\left(m_{1} \triangleleft g_{1}\right)\right) \\
& =\delta_{\theta(g), \theta\left(m_{1} \triangleright g_{1}\right)} \delta_{\theta(m \triangleright g)} \otimes \theta\left((m \triangleleft g)\left(m_{1} \triangleleft g_{1}\right)\right) \quad\left(\text { applying } \theta^{-1}\right) \\
& =\delta_{g, m_{1} \triangleright g_{1}} \delta_{m \triangleright g} \otimes \theta\left((m \triangleleft g)\left(m_{1} \triangleleft g_{1}\right)\right) \quad\left(\text { putting } \mathrm{g}=\mathrm{m}_{1} \triangleright \mathrm{~g}_{1}\right) \\
& =\delta_{g, m_{1} \triangleright g_{1}} \delta_{\theta\left(m \triangleright\left(m_{1} \triangleright g_{1}\right)\right)} \otimes \theta\left(\left(m \triangleleft\left(m_{1} \triangleright g_{1}\right)\right)\left(m_{1} \triangleleft g_{1}\right)\right) \\
& =\delta_{g, m_{1} \triangleright g_{1}} \delta_{\theta\left(m m_{1} \triangleright g_{1}\right)} \otimes \theta\left(m m_{1} \triangleleft g_{1}\right) .
\end{aligned}
$$

Next, we check the condition for $\tilde{\theta}$ to be a coalgebra isomorphism, i.e.,

$$
\begin{equation*}
\Delta \widetilde{\theta}\left(m \otimes \delta_{g}\right)=(\widetilde{\theta} \otimes \widetilde{\theta}) \Delta\left(m \otimes \delta_{g}\right) \tag{19}
\end{equation*}
$$

We start with

$$
\begin{aligned}
\Delta \widetilde{\theta}\left(m \otimes \delta_{g}\right) & =\Delta\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g)\right) \\
& =\sum_{a, b \in M: a b=\theta(m \triangleright g)} \delta_{a} \otimes(b \triangleright \theta(m \triangleleft g)) \otimes \delta_{b} \otimes \theta(m \triangleleft g) .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
(\widetilde{\theta} \otimes \widetilde{\theta}) \Delta\left(m \otimes \delta_{g}\right) & =(\widetilde{\theta} \otimes \widetilde{\theta}) \sum_{x, y \in G: x y=g}\left(m \otimes \delta_{x}\right) \otimes\left((m \triangleleft x) \otimes \delta_{y}\right) \\
& =\sum_{x, y \in G: x y=g} \widetilde{\theta}\left(m \otimes \delta_{x}\right) \otimes \widetilde{\theta}\left((m \triangleleft x) \otimes \delta_{y}\right) \\
& =\sum_{x, y \in G: x y=g} \delta_{\theta(m \triangleright x)} \otimes \theta(m \triangleleft x) \otimes \delta_{\theta((m \triangleleft x) \triangleright y)} \otimes \theta((m \triangleleft x) \triangleleft y) \\
& =\sum_{x, y \in G: x y=g} \delta_{\theta(m \triangleright x)} \otimes \theta(m \triangleleft x) \otimes \delta_{\theta((m \triangleleft x) \triangleright y)} \otimes \theta(m \triangleleft x y) .
\end{aligned}
$$

If we put $a=\theta(m \triangleright x)$ and $b=\theta((m \triangleleft x) \triangleright y)$, then

$$
\begin{aligned}
a b & =\theta(m \triangleright x) \theta((m \triangleleft x) \triangleright y) \\
& =\theta((m \triangleright x)((m \triangleleft x) \triangleright y)) \\
& =\theta(m \triangleright(x y))=\theta(m \triangleright g) .
\end{aligned}
$$

By comparing the left hand side of equation (19) with the right hand side, we should have

$$
\begin{aligned}
b \triangleright \theta(m \triangleleft g) & =\theta((m \triangleleft x) \triangleright y) \triangleright \theta(m \triangleleft g) \\
& =\theta\left((m \triangleright x)^{-1}(m \triangleright(x y))\right) \triangleright \theta(m \triangleleft g) \\
& =\theta\left((m \triangleright x)^{-1}(m \triangleright g)\right) \triangleright \theta(m \triangleleft g) \\
& =\theta(m \triangleright x)^{-1} \triangleright(\theta(m \triangleright g) \triangleright \theta(m \triangleleft g)) \\
& =\theta(m \triangleright x)^{-1} \triangleright \theta(m) \\
& =\theta(m \triangleright x)^{-1} \triangleright(\theta(m \triangleright x) \triangleright \theta(m \triangleleft x)) \\
& =\theta\left((m \triangleright x)^{-1}(m \triangleright x)\right) \theta(m \triangleleft x) \\
& =\theta(e) \theta(m \triangleleft x) \\
& =\theta(m \triangleleft x) .
\end{aligned}
$$

This shows that equation (19) is satisfied.
We need now to check the effect of $\tilde{\theta}$ on the unit and counit. We start with the counit to prove that:

$$
\epsilon_{H^{*}} \widetilde{\theta}\left(m \otimes \delta_{g}\right)=\epsilon_{H}\left(m \otimes \delta_{g}\right)
$$

So

$$
\begin{aligned}
\epsilon_{H^{*}} \widetilde{\theta}\left(m \otimes \delta_{g}\right) & =\epsilon_{H^{*}}\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g)\right) \\
& =\delta_{\theta(m \triangleright g), e} .
\end{aligned}
$$

To have a non-zero answer we should have $\theta(m \triangleright g)=e$, or $\theta(m \triangleright g)=\theta(e)$ which implies that $m \triangleright g=e$ since θ is invertible. Applying $m^{L} \triangleright$ to both sides gives

$$
\begin{aligned}
m^{L} \triangleright m \triangleright g & =m^{L} \triangleright e \\
\Rightarrow m^{L} m \triangleright g & =e \\
\Rightarrow e \triangleright g & =e \\
\Rightarrow g & =e,
\end{aligned}
$$

hence

$$
\begin{aligned}
\epsilon_{H^{*}} \widetilde{\theta}\left(m \otimes \delta_{g}\right) & =\epsilon_{H^{*}}\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g)\right) \\
& =\delta_{\theta(m \triangleright g), e} \\
& =\delta_{g, e}=\epsilon_{H}\left(m \otimes \delta_{g}\right) .
\end{aligned}
$$

For the unit, we need to prove that $\widetilde{\theta}\left(1_{H}\right)=1_{H^{*}}, \quad$ which we do as follows:

$$
\begin{aligned}
\widetilde{\theta}\left(1_{H}\right) & =\widetilde{\theta}\left(\sum_{g} e \otimes \delta_{g}\right) \\
& =\sum_{\theta(e \triangleright g)} \delta_{\theta(e \triangleright g)} \otimes \theta(e \triangleleft g) \\
& =\sum_{\theta(g)} \delta_{\theta(g)} \otimes \theta(e) \\
& =\sum_{\theta(g)} \delta_{\theta(g)} \otimes e=1_{H^{*}} .
\end{aligned}
$$

To check that the antipode is preserved, we need the following calculations:

$$
\begin{aligned}
(m g)^{L} & =g^{L} m^{L}=g^{-1} m^{L}=((m \triangleright g)(m \triangleleft g))^{L} \\
& =(m \triangleleft g)^{L}(m \triangleright g)^{L}=(m \triangleleft g)^{L}(m \triangleright g)^{-1} \\
& =\left((m \triangleleft g)^{L} \triangleright(m \triangleright g)^{-1}\right)\left((m \triangleleft g)^{L} \triangleleft(m \triangleright g)^{-1}\right) .
\end{aligned}
$$

By the uniqueness of factorization, we should have

$$
\begin{equation*}
g^{L}=g^{-1}=\left((m \triangleleft g)^{L} \triangleright(m \triangleright g)^{-1}\right), \tag{20}
\end{equation*}
$$

and

$$
\begin{equation*}
m^{L}=\left((m \triangleleft g)^{L} \triangleleft(m \triangleright g)^{-1}\right) . \tag{21}
\end{equation*}
$$

Due to the fact that θ is a semigroup isomorphism, we have

$$
\begin{equation*}
\theta\left(g^{L}\right)=\theta\left(g^{-1}\right)=(\theta(g))^{L}=\theta\left((m \triangleleft g)^{L} \triangleright(m \triangleright g)^{-1}\right), \tag{22}
\end{equation*}
$$

$$
\begin{equation*}
\theta\left(m^{L}\right)=(\theta(m))^{L}=(\theta(m))^{-1}=\theta\left((m \triangleleft g)^{L} \triangleleft(m \triangleright g)^{-1}\right) . \tag{23}
\end{equation*}
$$

Moreover, it is needed to prove that the antipode S satisfying

$$
\begin{equation*}
\widetilde{\theta} S\left(m \otimes \delta_{g}\right)=\widetilde{S} \tilde{\theta}\left(m \otimes \delta_{g}\right) \tag{24}
\end{equation*}
$$

which we do as follows:

$$
\begin{aligned}
\tilde{\theta} S\left(m \otimes \delta_{g}\right) & =\widetilde{\theta}\left(S\left(m \otimes \delta_{g}\right)\right) \\
& =\widetilde{\theta}\left((m \triangleleft g)^{L} \otimes \delta_{(m \triangleright g)^{-1}}\right) \\
& =\delta_{\theta\left((m \triangleleft g)^{L} \triangleright(m \triangleright g)^{-1}\right)} \otimes \theta\left((m \triangleleft g)^{L} \triangleleft(m \triangleright g)^{-1}\right) \\
& =\delta_{(\theta(g))^{L}} \otimes(\theta(m))^{-1} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
S \widetilde{\theta}\left(m \otimes \delta_{g}\right) & =S\left(\widetilde{\theta}\left(m \otimes \delta_{g}\right)\right) \\
& =S\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g)\right) \\
& =\delta_{(\theta(m \triangleright g) \triangleleft \theta(m \triangleleft g))^{L}} \otimes(\theta(m \triangleright g) \triangleright \theta(m \triangleleft g))^{-1} \\
& =\delta_{(\theta(g))^{L}} \otimes(\theta(m))^{-1},
\end{aligned}
$$

as required.
Finally, to see that $\widetilde{\theta}: H^{*} \rightarrow H$ is invertible, we define $\widetilde{\theta}^{-1}: H^{*} \rightarrow H$ by

$$
\begin{equation*}
\widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right)=\theta^{-1}(m \triangleright g) \otimes \delta_{\theta^{-1}(m \triangleleft g)} \tag{25}
\end{equation*}
$$

and we want to prove that :

$$
\widetilde{\theta} \widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right)=i d\left(\delta_{m} \otimes g\right),
$$

and

$$
\widetilde{\theta}^{-1} \widetilde{\theta}\left(m \otimes \delta_{g}\right)=i d\left(m \otimes \delta_{g}\right)
$$

where $i d$ is the identity map.

$$
\begin{aligned}
\widetilde{\theta} \widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right) & =\widetilde{\theta}\left(\widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right)\right) \\
& =\widetilde{\theta}\left(\theta^{-1}(m \triangleright g) \otimes \delta_{\theta^{-1}(m \triangleleft g)}\right) \\
& =\delta_{\theta\left(\theta^{-1}(m \triangleright g) \triangleright \theta^{-1}(m \triangleleft g)\right)} \otimes \theta\left(\theta^{-1}(m \triangleright g) \triangleleft \theta^{-1}(m \triangleleft g)\right) \\
& =\delta_{\theta\left(\theta^{-1}(m)\right)} \otimes \theta \theta^{-1}(g) \\
& =\delta_{m} \otimes g .
\end{aligned}
$$

Also,

$$
\begin{aligned}
\widetilde{\theta}^{-1} \widetilde{\theta}\left(m \otimes \delta_{g}\right) & =\widetilde{\theta}^{-1}\left(\widetilde{\theta}\left(m \otimes \delta_{g}\right)\right) \\
& =\widetilde{\theta}^{-1}\left(\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g)\right) \\
& =\theta^{-1}(\theta(m \triangleright g) \triangleright \theta(m \triangleleft g)) \otimes \delta_{\theta^{-1}(\theta(m \triangleright g) \triangleleft \theta(m \triangleleft g))} \\
& =\theta^{-1}(\theta(m)) \otimes \delta_{\theta^{-1}(\theta(g))} \\
& =m \otimes \delta_{g}
\end{aligned}
$$

as required. Therefore, $\widetilde{\theta}$ is a left Hopf algebra isomorphism.

Proposition 2.4 Let $H=k M \bowtie k(G)$ be a left Hopf algebra associated to a factorization of a group $X=G M$ into a subgroup G and a subsemigroup M whit identity and a left inverse property where $k(G)$ is the Hopf algebra of function on the subgroup G and $k M$ is the semigroup left Hopf algebra of the semigroup M. Then the we can induce the factor-reversing semigroup isomorphism of $X=G M$ from a left Hopf algebra self-duality pairings $<,>$: $H \otimes H \rightarrow k$ on the left Hopf algebra H. The formula for the corresponding pairing is

$$
\begin{equation*}
<m \otimes \delta_{g}, m_{1} \otimes \delta_{g_{1}}>=\delta_{m, \theta\left(m_{1} \triangleright g\right)} \delta_{g, \theta\left(m_{1} \triangleleft g_{1}\right)} \tag{26}
\end{equation*}
$$

Proof. Assume that $\tilde{\theta}: H \rightarrow H^{*}$ which is defined by

$$
\widetilde{\theta}\left(m \otimes \delta_{g}\right)=\delta_{\theta(m \triangleright g)} \otimes \theta(m \triangleleft g),
$$

is a left Hopf algebra isomorphism which sends basis elements of H to basis elements of H^{*}. We want to prove that we can induce a semigroup isomorphism θ from $\widetilde{\theta}$. We start with functions $\mathfrak{m}: M \times G \rightarrow M$ and $\mathfrak{g}: M \times G \rightarrow G$ such that

$$
\begin{equation*}
\widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right)=\mathfrak{m}(m, g) \otimes \delta_{\mathfrak{g}(m, g)} \tag{27}
\end{equation*}
$$

The condition that $\widetilde{\theta}^{-1}$ preserves the unit gives

$$
\widetilde{\theta}^{-1}\left(1_{H^{*}}\right)=\widetilde{\theta}^{-1}\left(\sum_{m} \delta_{m} \otimes e\right)=\sum_{\mathfrak{g}(m, e)} \mathfrak{m}(m, e) \otimes \delta_{\mathfrak{g}(m, e)} .
$$

But

$$
\widetilde{\theta}^{-1}\left(1_{H^{*}}\right)=\tilde{\theta}^{-1}\left(\sum_{m} \delta_{m} \otimes e\right)=\sum_{g} e \otimes \delta_{g}=1_{H}
$$

since $\widetilde{\theta}^{-1}$ is an algebra isomorphism. From these we see that

$$
\begin{equation*}
\mathfrak{m}(m, e)=e \tag{28}
\end{equation*}
$$

Also, the preservation of the counit gives

$$
\epsilon_{H} \widetilde{\theta}^{-1}\left(\delta_{s} \otimes u\right)=\epsilon_{H}\left(\mathfrak{m}(m, g) \otimes \delta_{\mathfrak{g}(m, g)}\right)=\delta_{\mathfrak{g}(m, g), e}
$$

But

$$
\epsilon_{H} \widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right)=\epsilon_{H^{*}}\left(\delta_{m} \otimes g\right)=\delta_{m, e},
$$

since $\widetilde{\theta}^{-1}$ is a coalgebra isomorphism. Putting $m=e$, we find

$$
\begin{equation*}
\mathfrak{g}(e, g)=e \tag{29}
\end{equation*}
$$

Next, we use the fact that $\widetilde{\theta}^{-1}$ is an algebra homomorphism in the equation

$$
\begin{equation*}
\widetilde{\theta}^{-1}\left(\left(\delta_{m} \otimes g\right)\left(\delta_{m_{1}} \otimes g_{1}\right)\right)=\widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right) \widetilde{\theta}^{-1}\left(\delta_{m_{1}} \otimes g_{1}\right), \tag{30}
\end{equation*}
$$

to obtain the following equivalent equations:

$$
\begin{gathered}
\widetilde{\theta}^{-1}\left(\delta_{m \triangleleft g, m_{1}}\left(\delta_{m} \otimes g g_{1}\right)\right)=\left(\mathfrak{m}(m, g) \otimes \delta_{\mathfrak{g}(m, g)}\right)\left(\mathfrak{m}\left(m_{1}, g_{1}\right) \otimes \delta_{\mathfrak{g}\left(m_{1}, g_{1}\right)}\right), \\
\delta_{m \triangleleft g, m_{1}} \widetilde{\theta}^{-1}\left(\delta_{m} \otimes g g_{1}\right)=\delta_{\mathfrak{g}(m, g), \mathfrak{m}\left(m_{1}, g_{1}\right) \triangleright \mathfrak{g}\left(m_{1}, g_{1}\right)}\left(\mathfrak{m}(m, g) \mathfrak{m}\left(m_{1}, g_{1}\right) \otimes \delta_{\mathfrak{g}\left(m_{1}, g_{1}\right)}\right),
\end{gathered}
$$

or
$\delta_{m \triangleleft g, m_{1}}\left(\mathfrak{m}\left(m, g g_{1}\right) \otimes \delta_{\mathfrak{g}\left(m, g g_{1}\right)}\right)=\delta_{\mathfrak{g}(m, g), \mathfrak{m}\left(m_{1}, g_{1}\right) \triangleright \mathfrak{g}\left(m_{1}, g_{1}\right)}\left(\mathfrak{m}(m, g) \mathfrak{m}\left(m_{1}, g_{1}\right) \otimes \delta_{\mathfrak{g}\left(m_{1}, g_{1}\right)}\right)$.

To have a non-zero answer we should have :

$$
\begin{equation*}
m_{1}=m \triangleleft g, \tag{31}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathfrak{g}(m, g)=\mathfrak{m}\left(m_{1}, g_{1}\right) \triangleright \mathfrak{g}\left(m_{1}, g_{1}\right) \tag{32}
\end{equation*}
$$

Thus, for all $m, m_{1} \in M$ and $g, g_{1} \in G$, we deduce

$$
\begin{gather*}
\mathfrak{m}\left(m, g g_{1}\right)=\mathfrak{m}(m, g) \mathfrak{m}\left(m_{1}, g_{1}\right), \tag{33}\\
\mathfrak{g}\left(m, g g_{1}\right)=\mathfrak{g}\left(m_{1}, g_{1}\right) . \tag{34}
\end{gather*}
$$

Note that if we put $m=e$ in (33) and substitute $m_{1}=m \triangleleft g$, we get

$$
\begin{equation*}
\mathfrak{m}\left(e, g g_{1}\right)=\mathfrak{m}(e, g) \mathfrak{m}\left(e, g_{1}\right) . \tag{35}
\end{equation*}
$$

Now, the equations for preservation of the coproduct yield

$$
\begin{aligned}
\Delta \widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right) & =\Delta\left(\mathfrak{m}(m, g) \otimes \delta_{\mathfrak{g}(m, g)}\right) \\
& =\sum_{x, y \in G, x y=\mathfrak{g}(m, g)} \mathfrak{m}(m, g) \otimes \delta_{x} \otimes(\mathfrak{m}(m, g) \triangleleft x) \otimes \delta_{y},
\end{aligned}
$$

and

$$
\begin{aligned}
\Delta \widetilde{\theta}^{-1}\left(\delta_{m} \otimes g\right) & =\left(\widetilde{\theta}^{-1} \otimes \widetilde{\theta}^{-1}\right) \Delta\left(\delta_{m} \otimes g\right) \quad\left(\text { since } \widetilde{\theta}^{-1} \text { is a colagebra isomorphism }\right) \\
& =\left(\widetilde{\theta}^{-1} \otimes \widetilde{\theta}^{-1}\right)\left(\sum_{a, b \in M: a b=m}\left(\delta_{a} \otimes(b \triangleright g)\right) \otimes\left(\delta_{b} \otimes g\right)\right) \\
& =\sum_{a, b \in M: a b=m} \widetilde{\theta}^{-1}\left(\delta_{a} \otimes(b \triangleright g)\right) \otimes \widetilde{\theta}^{-1}\left(\delta_{b} \otimes g\right) \\
& =\sum_{a, b \in M: a b=m} \mathfrak{m}(a, b \triangleright g) \otimes \delta_{\mathfrak{g}(a, b \triangleright g)} \otimes \mathfrak{m}(b, g) \otimes \delta_{\mathfrak{g}(b, g)} .
\end{aligned}
$$

Thus

$$
\mathfrak{g}(m, g)=\mathfrak{g}(a, b \triangleright g) \mathfrak{g}(b, g)=\mathfrak{g}(a b, g) .
$$

Putting $g=e$ gives

$$
\begin{equation*}
\mathfrak{g}(m, g)=\mathfrak{g}(a, b \triangleright e) \mathfrak{g}(b, e)=\mathfrak{g}(a, e) \mathfrak{g}(b, e)=\mathfrak{g}(a b, e) \tag{36}
\end{equation*}
$$

From the coproduct formula we also see that $\mathfrak{m}(m, g) \triangleleft x=\mathfrak{m}(b, g)$ where $x=\mathfrak{g}(a, b \triangleright g)$ and $a b=m$. Putting $b=e$ here gives

$$
\mathfrak{m}(m, g) \triangleleft \mathfrak{g}(a, g)=\mathfrak{m}(e, g)
$$

From (36), we have $\mathfrak{g}(m, g)=\mathfrak{g}(a b, g)$. Putting $b=e$ gives $\mathfrak{g}(m, g)=\mathfrak{g}(a, g)$. Hence

$$
\begin{equation*}
\mathfrak{m}(m, g) \triangleleft \mathfrak{g}(m, g)=\mathfrak{m}(e, g) . \tag{37}
\end{equation*}
$$

From (32), with $m=m_{1} \triangleleft g^{-1}$ and $g=e$, we get:

$$
\begin{aligned}
\mathfrak{m}\left(m_{1}, g_{1}\right) \triangleright \mathfrak{g}\left(m_{1}, g_{1}\right) & =\mathfrak{g}(m, g) \\
& =\mathfrak{g}\left(m_{1} \triangleleft g^{-1}, g\right) \\
& =\mathfrak{g}\left(m_{1} \triangleleft g^{-1}, e\right) \\
& =\mathfrak{g}\left(m_{1} \triangleleft e, e\right) \quad\left(\text { as } g=e, \text { then } g^{-1}=e, g \in G\right) \\
& =\mathfrak{g}\left(m_{1}, e\right) .
\end{aligned}
$$

Consequently,

$$
\begin{equation*}
\mathfrak{m}\left(m_{1}, g_{1}\right) \triangleright \mathfrak{g}\left(m_{1}, g_{1}\right)=\mathfrak{g}\left(m_{1}, e\right) \tag{38}
\end{equation*}
$$

If we put (37) and (38) together, then

$$
\begin{equation*}
\mathfrak{m}(m, g) \mathfrak{g}(m, g)=(\mathfrak{m}(m, g) \triangleright \mathfrak{g}(m, g))(\mathfrak{m}(m, g) \triangleleft \mathfrak{g}(m, g))=\mathfrak{g}(m, e) \mathfrak{m}(e, g) \tag{39}
\end{equation*}
$$

From (34) with $g_{1}=e$, we have

$$
\mathfrak{g}(m, g)=\mathfrak{g}\left(m_{1}, e\right)
$$

Also, from (31), we have $m_{1}=m \triangleleft g$ which implies that

$$
\mathfrak{g}(m, g)=\mathfrak{g}(m \triangleleft g, e) .
$$

From the coproduct formula we get $\mathfrak{m}(a, b \triangleright g)=\mathfrak{m}(m, g)$ and $m=a b$ which implies that

$$
\mathfrak{m}(a, b \triangleright g)=\mathfrak{m}(a b, g) .
$$

Putting $a=e$ gives

$$
\mathfrak{m}(e, b \triangleright g)=\mathfrak{m}(b, g)
$$

Substiuting these equations into (39) gives

$$
\begin{equation*}
\mathfrak{m}(e, m \triangleright g) \mathfrak{g}(m \triangleleft g, e)=\mathfrak{g}(m, e) \mathfrak{m}(e, g) \tag{40}
\end{equation*}
$$

Therefore, equations (28), (29), (35), (36), and (40) are all the conditions needed to prove that the map $\psi: X \rightarrow X$ defined by

$$
\begin{aligned}
\psi(m g) & =\mathfrak{g}(m, e) \mathfrak{m}(e, g) \\
& =\psi(m) \psi(g)
\end{aligned}
$$

is a semigroup homomorphism. Since $G \bigcap M=e$, the map ψ is well defined. If we set $\theta=\psi^{-1}$ we see that our original left Hopf algebra map $\widetilde{\theta}$ is indeed that induced by θ.

3 ACKNOWLEDGMENT

The second author would like to thank the Kuwait Foundation for the Advancement of Sciences (KFAS) for their financial support for his research visit to the Department of Pure Mathematics, Cambridge University, which enabled him to complete this paper. Also he would like to thank both Professor John Coates (the supervisor of the KFAS programme in Cambridge University) and Professor Martine Hyland (the head of the Department of Pure Mathematics) for their warm hospitality and all the facilities they offered him during his stay in Cambridge University.

References

[1] M. M. Al-Shomrani and E. J. Beggs, Making nontrivially associated modular categories from finite groups. Int. J. Math. and Math. Science, 2004 (42) (2004), 2231-2264.
[2] M. M. Al-Shomrani, Algebras and their dual in rigid tensor categories, Int. Math. Forum, 1 (9-12)(2006) 525-550.
[3] J. Beachy, Introductory Lectures on Rings and Modules. Cambridge University Press,(1999), 26-27 .
[4] E. J. Beggs, J. D. Gould and S. Majid, Finite group factorizations and braiding. J. Algebra, 181 (1) (1996) 112-151.
[5] E. J. Beggs and S. Majid, Quasitriangular and differential structures on bicrossproduct Hopf algebras. J. Algebra, 219 (2) (1996) 682 - 727.
[6] J. A. Green, W. D. Nichols and E. J. Taft, Left Hopf algebras. J. Algebra, 65 (2) (1980) 399-411.
[7] S. MajID, Physics for algebraists: Non-commutative and noncocommutative Hopf algebras by a bicrossproduct construction. J. Algebra, 130 (1990) 17-64.
[8] S. Majid, The quantum double as quantum mechanics. J. Geom. Phys., 13 (1994) 169-202.

Received: May, 2009

