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Abstract

Abstract: A topological space X is called almost normal if for
any two disjoint closed subsets A and B of X one of which is regularly
closed, there exist two open disjoint subsets U and V of X such that
A ⊆ U and B ⊆ V . We will present an example of a Tychonoff almost
normal space which is not normal. Almost normality is not productive.
We will present some conditions to assure that the product of two
spaces will be almost normal.
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We investigate in this paper a weaker version of normality called almost
normality. We will prove that almost normality is a property which lies
between mild normality and normality. We will present an example of a
Tychonoff almost normal space which is not normal. We will show that
almost normality is not productive and we will present some conditions to
assure that the product of two spaces will be almost normal.

We will denote an order pair by 〈x, y〉, the set of positive integers by N
and the set of real numbers by R. A T4 space is a T1 normal space. And a
Tychonoff space is a T1 completely regular space. The interior of a set A will
be denoted by intA, and the closure of a set A will be denoted by A.
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1 Definition:
A subset A of a topological space X is called regularly closed (called also,

closed domain ) if A = int A . A subset A is called regularly open (called
also, open domain ) if A = int( A ). Two subsets A and B in a topological
space X are said to be separated if there exist two disjoint open subsets U
and V such that A ⊆ U and B ⊆ V .

2 Definition:
A topological space X is called mildly normal (called also κ-normal) if

for any two disjoint regularly closed subsets A and B of X, there exist two
open disjoint subsets U and V of X such that A ⊆ U and B ⊆ V .

3 Definition: (Singal and Arya)
A topological space X is called almost normal if for any two disjoint

closed subsets A and B of X one of which is regularly closed, there exist two
open disjoint subsets U and V of X such that A ⊆ U and B ⊆ V .

It is clear from the definitions that any normal space is almost normal
and any almost normal space is mildly normal. The converse is not always
true. The space ω1 × ω1 + 1 is mildly normal, see [2] and [3], but not almost
normal because the closed subset A = ω1×{ω1} is disjoint from the regularly
closed subset B = {〈α, α〉 : α < ω1} and they cannot be separated by two
disjoint open subsets, see [1].

In [4], Singal and Arya introduced a finite space which is almost normal
but not normal nor T1. Since a T1 finite space is discrete, the question, now,
is the following: Is there a Tychonoff space which is almost normal but not
normal? We will answer this below.

The following theorem, see [4], gives a characterization of almost normal-
ity which we will use.

4 Theorem: (Singal and Arya)
For a space X, the following are equivalent

1. X is almost normal.

2. For every closed set B and every regularly open set A containing B,
there exists an open set U such that B ⊆ U ⊆ U ⊆ A.

We will present an example of a Tychonoff space which is almost normal
but not normal. But first we need to give a property which implies almost
normality. Recall that a space X is extremally disconnected if it is T1 and the
closure of any open set is open. Many topologists required T1 in the definition
of extremally disconnected. So, we give the following weaker condition.
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5 Definition:
A space X is called weakly extremally disconnected if the closure of any

open set is open.

It is clear that any extremally disconnected space is weakly extremally
disconnected. The converse is not always true. For example, let T√2 =

{∅}∪{U ⊆ R :
√

2 ∈ U}, then (R , T√2 ) is not T1, as any open set containing

0 must contains
√

2, but the closure of any non-empty open set is R, as {√2}
is dense in (R , T√2 ). Thus (R , T√2 ) is weakly extremally disconnected but
not extremally disconnected.

The next theorem is clear because in weakly extremally disconnected
spaces any regular closed set is clopen. Note that we do not assume any
separation axiom.

6 Theorem:
Any weakly extremally disconnected space is almost normal.

Now, we give an example of a Tychonoff space which is almost normal
but not normal.

7 Example:
Arrange all rationals of the closed unit interval I = [0, 1] into a sequence

{q1, q2, q3, ...}. Let t ∈ I, then there is a subsequence {qn1 , qn2 , qn3 , ...} that
converges to t in the usual topology. Let Nt = {n1, n2, n3, ...}. It is clear
that Nt 6= Nt′ for all t, t′ ∈ I with t 6= t′. The family {Ut : t ∈ I}, where
Ut = (βN \N)∩ Nt, where βN is the Stone-C̆ech compactification of N with
the discrete topology, has cardinality continuum c and consists of non-empty
subsets of βN \N. For every t 6= t′ ∈ I, we have Nt′ = F ∪M , where F ⊂ N
is a finite set and M ∩Nt = ∅. Thus, see [1,3.6.4], we have M ∩Nt = ∅. Since
F = F ⊂ N, then Ut∩Ut′ = (βN\N)∩Nt∩Nt′ = (βN\N)∩Nt∩ (F ∪M) =
(βN \ N) ∩ ((Nt ∩ F ) ∪ (Nt ∩M)) ⊆ (βN \ N) ∩ N = ∅.

Now, for each t ∈ I, choose a point xt ∈ Ut and define X = N ∪ {xt : t ∈
I}. Since N is locally compact and dense in X, then, see [1, 3.3.9], N is open
in X, hence X\N is closed in X consisting of isolated points. Thus, by Jones’s
Lemma, X is not normal. Since X is a subspace of βN and βN is Hausdorff
and compact, then X is Tychonoff. Since βN is extremally disconnected and
X is dense in βN, as N ⊂ X and N is dense in any compactification of it,
then X is extremally disconnected (extremal disconnectedness is hereditary
with respect to both open subsets and dense subsets, see [1]). Therefore, X
is almost normal Tychonoff space which is not normal.
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Any T4 space which is not extremally disconnected is an example of an
almost normal space which is not weakly extremally disconnected. It is
natural to ask the following problem. ”Is there a Tychonoff space which
is almost normal but not weakly extremally disconnected nor normal?” The
answer is yes. Take the space X of Example 7 and consider the free sum
X ⊕ R, where R is considered with its usual metric topology.

Now, we will give an example of a Hausdorff almost normal space X which
is not regular nor normal. First, let us recall some basics of the notion of
filters. A filter on a set X is a collection F of subsets of X with the following
properties:

1. Every subset of X which contains a set of F belongs to F .

2. Every finite intersection of sets of F belongs to F .

3. The empty set is not in F .

If a filter F on X has the property that there is no filter F ′ on X such that
F ⊆ F ′ and F 6= F ′, then F is called an ultrafilter on X. Equivalently, F
is an ultrafilter if and only if for every two disjoint subsets A and B of X
such that A ∪B ∈ F , then either A ∈ F or B ∈ F . If a point x is in all sets
of a filter we call it a cluster point. Clearly an ultrafilter can have at most
one cluster point. An ultrafilter with a cluster point p is just the set of all
sets containing p and is called a principal ultrafilter. An ultrafilter with no
cluster point is called nonprincipal or free ultrafilter.

For more details about the next example, see [5].

8 Example:
Let M be the collection of all free ultrafilters on N. Let X = N∪M. Let

the topology T on X be generated by the neighborhood system {B(x) : x ∈
X} where B(x) = {{x}} for each x ∈ N, i.e., points of N are isolated, and
B(x) = {A ∪ {F} : A ∈ F ∈M} for each x = F ∈M.

X is Hausdorff because any two members F and G of M, being ultrafil-
ters, are incomparable. So, there exist A ∈ F \G, B ∈ G \ F . Then since F
is an ultrafilter, N \ B ∈ F , so A ∩ (N \ B) = A \ B. Similarly, B \ A ∈ G.
Thus (A \B)∪ {F} and (B \A)∪ {G} are disjoint open neighborhood of F
and G. Note that F ∈ M can be separated from any y ∈ N precisely since
no y can be contained in all sets of F because F can have no cluster points.

For extremal disconnectedness, suppose p is a limit point of an open set U
which does not belong to U . Since each point of N is open, p ∈ X \N = M.
So p is an ultrafilter, say F , and every neighborhood A ∪ {F} of p = F
(where A ∈ F ) intersects U . But since F itself does not belong to U , this
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intersection is contained in N. Thus, U ∩ N intersects every member of the
ultrafilter F , but it is a property of ultrafilters that for every subset S ⊂ N,
either S or its complement belongs to the ultrafilter. Since U ∩ N does not
intersect its own complement, U ∩ N itself must belong to the ultrafilter F .
That is, (U ∩N) ∈ p. Thus (U ∩N)∪ {F}, or equivelantly, (U ∩N)∪ {p}, is
open. Thus U∪{p} = U∪((U∩N)∪{p}) is open, and since p was an arbitrary
limit point of U , U must be open. Thus X is extremally disconnected.

Now, any basic open set of the form A ∪ {F} has a limit point every
ultrafilter G which contains A as an element, for if B ∈ G and A ∈ G, then
A ∩ B 6= ∅, so B ∪ {G} ∩ A ∪ {F} 6= ∅. So, if B ⊂ A, the set B ∪ {F}
contains all ultrafilters which contain B, which means that B ∪ {F} is not
contained in A ∪ {F}. Thus X cannot be regular.

9 Theorem:
If X is almost normal countably compact and M is paracompact first

countable, then X ×M is almost normal.
Proof: Let A and B be any two disjoint non-empty closed subsets of

X ×M where B is regularly closed. Let p1 : X ×M −→ X be the natural
projection. For each m ∈ M and each M -open neighborhood U(m) of m,
define the following subsets of X:

AU(m) = {x ∈ X : there exists y ∈ U(m) such that 〈x, y〉 ∈ A}

= p1((X × U(m)) ∩ A).

BU(m) = {x ∈ X : there exists z ∈ U(m) such that 〈x, z〉 ∈ intB}
= p1((X × U(m)) ∩ intB).

For each m ∈ M , fix a countable decreasing local base {Un(m) : n ∈ ω}
for M at m. We will write AUn instead of AUn(m) and BUn instead of BUn(m).
For each n ∈ ω and each m ∈ M , we have AUn ∩BUn ⊇ AUn+1 ∩BUn+1 . Thus
the family {AUn ∩ BUn : n ∈ ω} is a decreasing sequence of closed subsets
of X. If AUn ∩ BUn 6= ∅ for each n ∈ ω, then by countable compactness
of X, there exists an x ∈ X such that x ∈ ⋂

n∈ω(AUn ∩ BUn). So, if W is
any X-open neighborhood of x, then W ∩ AUn 6= ∅ 6= W ∩ BUn for each
n ∈ ω. We will show that 〈x,m〉 ∈ A ∩ B. Let W × U be any basic open
neighborhood of 〈x,m〉 in X × M . Then there exists an n ∈ ω such that
〈x,m〉 ∈ W × Un ⊆ W × U . Now, W ∩ BUn 6= ∅ implies that W ∩ {x ∈
X : there exists z ∈ U(m) such that 〈x, z〉 ∈ intB} 6= ∅, thus there exists
a ∈ W and a ∈ {x ∈ X : there exists z ∈ U(m) such that 〈x, z〉 ∈ intB}.
That is, a ∈ W and there exists z ∈ Un such that 〈a, z〉 ∈ intB, thus
〈a, z〉 ∈ (W × Un) ∩ intB. Thus (W × Un) ∩ intB 6= ∅. Therefore, 〈x,m〉 ∈
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int B = B. Also, W ∩ AUn 6= ∅ implies W ∩ {x ∈ X : there exists y ∈
U(m) such that 〈x, y〉 ∈ A} 6= ∅, thus there exists a ∈ W and a ∈ {x ∈
X : there exists y ∈ U(m) such that 〈x, y〉 ∈ A}, which means a ∈ W and
there exists y ∈ Un such that 〈a, y〉 ∈ A. Thus 〈a, y〉 ∈ (W × Un) ∩ A,
i.e., (W × Un) ∩ A 6= ∅. Thus 〈x,m〉 ∈ A = A. Thus A ∩ B 6= ∅ which is
a contradiction. Therefore, we conclude that for each m ∈ M there exists
an open neighborhood U(m) of m such that AU(m) ∩ BU(m) = ∅. Since the
natural projection is an open function, then for each m ∈ M we have that
BU(m) is a regularly closed subset of X. Since X is almost normal, then for
each m ∈ M , there are open disjoint subsets Gm and Hm of X such that
AU(m) ⊆ Gm and BU(m) ⊆ Hm. Now, {U(m) : m ∈ M} is an open cover
of M . Since M is paracompact, then there is a locally finite open cover
{Vm : m ∈ M} such that for each m ∈ M , we have Vm ⊆ Vm ⊆ Um = U(m).

Claim 1: B ⊆ ⋃
m∈M(Hm × Vm).

Let 〈x, y〉 ∈ B be arbitrary, then there is an m′ ∈ M such that y ∈ Vm′ ⊆
Vm′ ⊆ Um′ . Suppose that x 6∈ BU ′m , then there exists an open neighborhood G
of x such that G∩BUm′ = ∅. By the definition of BUm′ , we have G∩Um′ = ∅.
It means that for each z ∈ Um′ and each x′ ∈ G, we have 〈x′, z〉 6∈ int B.
Therefore, (G × Um′) ∩ B = ∅. Since x ∈ G and y ∈ Vm′ ⊆ Um′ , then
〈x, y〉 6∈ int B = B, a contradiction. Therefore, x ∈ BUm′ ⊆ Hm′ , hence
〈x, y〉 ∈ Hm′ × Vm′ ⊆ ⋃

m∈M(Hm × Vm) and hence Claim 1 is proved.

Claim 2: A ∩ (Hm × Vm) = ∅ for each m ∈ M .
Suppose that there exists an m ∈ M and 〈x, y〉 ∈ X × M such that

〈x, y〉 ∈ A∩ (Hm × Vm) = A∩ ( Hm × Vm ). Then y ∈ Vm . Since Vm ⊆ Um,
then A ∩ (X × Vm ) ⊆ A ∩ (X × Um) ⊆ A ∩ (X × Um) . So, by continuity of
p1, we have p1(A∩ (X×Vm )) ⊆ p1( A ∩ (X × Um) ) ⊆ p1(A ∩ (X × Um) ) =
AUm . Since y ∈ Vm and 〈x, y〉 ∈ A, then x ∈ p1(A∩(X×Vm )) ⊆ AUm ⊆ Gm.
But x is also in Hm , thus Gm ∩Hm 6= ∅ which is a contradiction, and hence
Claim 2 is proved.

Now, since {Vm : m ∈ M} is locally finite, then {Hm × Vm : m ∈ M} is a
locally finite family of open subsets of X×M . By Claim 1, B ⊆ ⋃

m∈M(Hm×
Vm) where the later set is open. By Claim 2, A

⋂ ⋃
m∈M(Hm × Vm) = ∅,

because
⋃

m∈M(Hm × Vm) =
⋃

m∈M (Hm × Vm ) by locally finiteness.

Therefore A and B can be separated by disjoint open sets, thus X ×M
is almost normal.

The space ω1×ω1+1 shows that neither paracompactness nor first count-
able can be dropped from the hypotheses on the second factor.

6



10 Corollary:
If X is almost normal countably compact and M is metrizable, then

X ×M is almost normal.

We still do not know if the Sorgenfrey line square is almost normal nor if
the Niemytzki (the Moore) plane is almost normal.

Now, let Q denote the set of rational numbers and P denote the set of
irrational numbers. Let M denote the Michael line. So, M = R, the irrational
points are isolated, and a basic open neighborhood for a rational point is the
same as in R with the usual topology. It is well known that M × P is not
normal, where the topology on P is the usual topology, see [En, 5.1.32]. We
are going to show that M× P is not almost normal.

11 Proposition:
The product space M× P is not almost normal.
Proof:
Let U = {〈x, y〉 : x ∈ R, y ∈ P, x > y} and V = {〈x, y〉 : x ∈ R, y ∈

P, x < y}. Then U and V are two disjoint open sets in M× P, and

M× P = U ∪ V ∪ {〈p, p〉 : p ∈ P}.

Let L = {〈x, x〉 : x ∈ R}. Then,

L ∩ (M× P) = {〈p, p〉 : p ∈ P}

.Hence
U \ U = {〈p, p〉 : p ∈ P}.

Since the closure of any open set is regularly closed, then A = U = U ∪
{〈p, p〉 : p ∈ P} is a regularly closed set. Now, let B = (Q×P)∩V . We want
to show that B is a closed subset in M× P or equivalently, (M× P) \ B is
an open set. Let 〈x, y〉 ∈ M× P and 〈x, y〉 6∈ B we have the following cases:

case(1) 〈x, y〉 ∈ U . Since U ∩V = ∅, then U ∩B = ∅. Since U is an open
set contains 〈x, y〉, then there exists open neighborhood W ⊆ U of 〈x, y〉
such that W ⊆ (M× P) \B. Hence 〈x, y〉 ∈ int( (M× P) \B ).

case(2) 〈x, y〉 ∈ L. Then x, y ∈ P and x = y. Since the subset P × P =
{〈x, y〉 :, x, y ∈ P} is open set, there exist open neighborhood W of 〈x, y〉,
such that W ⊆ P × P. So, W ∩ (Q × P) = ∅. Since B ⊆ (Q × P), then
W ⊆ (M× P) \B. Hence 〈x, y〉 ∈ int( (M× P) \B ).

case(3) 〈x, y〉 ∈ V \ B. Since V \ B ⊆ P × P, then similarly case(2)
there exists open neighborhood W of 〈x, y〉 such that W ⊆ P × P. So,
W ⊆ (M× P) \B. Hence 〈x, y〉 ∈ int( (M× P) \B ).
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From the above we have (M × P) \ B is open set. Hence B is a closed
set. Since U ∩ V = ∅, and B ⊆ V , then U ∩ B = ∅ i.e. A ∩ B = ∅, where A
is a regularly closed set and B is a closed set.

Now, for any point 〈x, y〉 ∈ M × P we shall let D(〈x, y〉, r) denote the
basic open neighborhood of 〈x, y〉 with center 〈x, y〉 and radius r define as
follows: when x ∈ Q let

D(〈x, y〉, r) = ((x− r, x + r)× (y − r, y + r)) ∩ (M× P).

When x ∈ P, let

D(〈x, y〉, r) = ({x} × (y − r, y + r)) ∩ (M× P)

Now, Let W1 and W2 be any two open sets such that A ⊆ W1 and B ⊆ W2 .
We will prove that W1∩W2 6= ∅. Now, for each 〈p, p〉 ∈ A ⊆ W1, there exists
a basic open set D(〈p, p〉, rp), where rp > 0 such that 〈p, p〉 ∈ D(〈p, p〉, rp) ⊆
W1. Now, define Sn = {〈p, p〉 : p ∈ P, rp > 1 \ n}. It is clear that Sn ⊆ A
for all n ∈ N. We need to show that

⋃

n∈N
Sn =

⋃
{〈p, p〉 : p ∈ P }

Let 〈p, p〉 ∈ A, where p ∈ P. Then there is basic open set D(〈p, p〉, rp) such
that 〈p, p〉 ∈ D(〈p, p〉, rp) ⊆ W1. And so, there is m ∈ N such that 1/m < rp.
Hence 〈p, p〉 ∈ Sm. Thus

⋃

n∈N
Sn ⊆

⋃
{〈p, p〉 : p ∈ P }

It clear that ⋃

n∈N
Sn ⊇

⋃
{〈p, p〉 : p ∈ P }

Then ⋃

n∈N
Sn =

⋃
{〈p, p〉 : p ∈ P }.

Now, we have L = {〈x, y〉 : x, y ∈ R, x = y} = (
⋃

n∈N Sn)
⋃

({〈q, q〉 :
q ∈ Q}) is a closed subset in (R2,U). Hence L is a complete metric space
as subspace in (R2,U), where U is the usual metric topology on the plane
R2. Since {〈q, q〉 : q ∈ Q} is countable set and {〈q, q〉} is nowhere dense
for each q ∈ Q in L as subspace in (R2,U). By Baire Category Theorem,
there exists n0 ∈ N such that Sn0 is no nowhere dense, i.e. there exists
basic open set I ⊆ L such that Sn0 = { 〈p, p〉 : p ∈ P, rp > 1 \ n0} is
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dense in I as subspace in L i.e. I ⊆ Sn0

L
. It is well known that I is on

the form I = ((a, b) × (a, b)) ∩ L, where a, b ∈ R. Now, let q ∈ Q such that
〈q, q〉 ∈ I and let m0 ∈ N such that 0 < 1 \m0 < 1 \ 2n0. We will show
that every open neighborhood for every 〈q, p〉 ∈ B, where p ∈ ( q, q + 1 \m0)
must intersect W1. So, W1 and W2 can not be disjoint. Let G be any basic
open neighborhood of 〈q, P 〉 ∈ B = (Q× P) ∩ V in M ×P, where 〈q, q〉 ∈ I
and p ∈ ( q, q + 1 \m0). We need to show that G ∩W1 6= ∅. Without loss

generality we can assume that G = D(〈q, p〉, ε), where ε > 0. Since I ⊆ Sn0

L

i.e. Sn0

L
is dense in I as subspace in L, therefore there exist p1 ∈ P such that

〈p1, p1〉 ∈ ( ( q− ε\2, q + ε\2) × (q− ε\2, q + ε\2))∩ I, and 〈p1, p1〉 ∈ Sn0 ,
since 1 \m < 1 \ 2n0 and rp1 > 1 \ n0. Hence D(〈p1, p1〉, rp1)∩G 6= ∅. Since
D(〈p1, p1〉, rp1) ⊆ W1, then W1 ∩ G 6= ∅. Therefore W1 ∩ W2 6= ∅. Hence
we cannot separated A and B by tow disjoint open sets. Thus M ×P is not
almost normal space.

It is still unknown if the Michael product M × P is mildly normal or
not, [3]. Also, whether the Dowker theorem version for almost normality is
true or not, which is the following problem:” If X is almost normal count-
ably paracompact and Y is compact second countable, is then X × Y almost
normal?
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