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ABSTRACT. An algorithm is presented which solves the system of simultaneous
linear equations generated after the application of finite differences to the ellip-
tic equation for rectangular regions. The subroutine made is arranged to take
minimum storage and minimum execution time. It is tested extensively on
three examples whose exact solutions are known apriori. The solutions ob-
tained are compared with the exact results and the results obtained by some au-
thors previously. The present results are found in good agreement with all
these results.

1. Introduction

A variety of physical phenomena are governed by elliptic partial differential equations,
e.g., Laplace’s equation, Poisson’s equation and Navier-Stokes equation.

Let the elliptic partial differential equation be of the form

(1)

where a,b,c and d are functions of two space coordinates (x,y). We wish to obtain the
numerical solution for the function u at the nodes of rectangular grid (Fig. 1) defined
over the domain D which is given by

D ={(x,y) : X1 ≤ x ≤ X2 , Y1 ≤ y ≤ Y2}

 The boundary conditions for domain D are of the form

(2)

(3)

19

JKAU: Eng. Sci., vol. 11 no. 1, pp.  19-30 (1419 A.H. / 1999 A.D.)

∂
∂

∂
∂

∂
∂

∂
∂

2

2

2

2
u

x

u

y
a x y

u

x
b x y

u

y
c x y u d x y+ + + + =( ) ( ) ( ) ( ), , , ,

u X y g y u X y g y

u x Y g x u x Y g x

( , ) ( )   ,  ( , ) ( )

( , ) ( )  ,  ( , ) ( )
1 1 2 2

1 3 2 4

= =
= =






∂ ∂u X y x h y u X y h y

u x Y h x u x Y h x

( , ) / ( )   ,  ( , ) ( )

( , ) ( )  ,  ( , ) ( )
1 1 2 2

1 3 2 4

= =
= =








P.K. Sharma and M.K. Agarwal20

FIG. 1.

Equation (1) with boundary conditions (2) or (3) arises in many scientific and engi-
neering applications. For examples Poisson’s equation in cartesian coordinates and cy-
lindrical coordinates, Laplace’s equation and Navier-Stokes equations all are elliptic
partial differential equations and extensively applied in heat and mass transfer, fluid
flow problems and potential problems.

Finite difference approximation of Equation (1) gives rise to block tridiagonal system
of linear equations whose solution is a problem in itself. Iterative methods like Jacobi’s
and Gauss-Seidel to solve such a system sometimes fail to converge because diagonal-
dominance property does not always hold good. Young[1] has described several iterative
techniques to solve linear system of equations which are sufficiently large. A second ap-
proach is to employ direct methods to solve such a system. Fox[2] has described some
direct schemes like factorization technique and Gaussian elimination to solve such a
system. Gupta and Manohar[3] have used LEQT1B, LEQT2B solvers or GELB solver.
However, these solvers take a little more storage and computer time, since they do not
take block tridiagonal property of the system into consideration. Linger[4] has applied a
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semi-direct method to solve Poisson’s equation. Elsner and Mehrmann[5] have dealt in
detail on the convergence conditions of block iterative methods. The block tridiagonal
system of linear equations is a sparse coefficient matrix system and it is possible to take
the advantage of the sparseness in order to reduce both computation time and storage re-
quirements. Duff[6], Erisman and Reid[7] have dealt in detail with the direct methods for
sparse matrices. Jennings[8] has also given methods like elimination using submatrices
to deal with a sparse structure of such type.

The present work also employs a direct elimination technique to solve a block tridiag-
onal system of linear equations. The program is prepared in such a manner that it does
not require zeros or units to be stored so that operation counts and memory require-
ments are sufficiently reduced and round-off errors are taken care off.

2. Structure of System of Equations

The rectangular region (Fig. 1) is divided into intervals so that there are in total
(m + 2) and (n + 2) nodes along X and Y directions and out of these m and n are interior
nodes (at which value of function u is required). The finite difference representation at
node (i, j) in Equation (1) is expressed as

uij = u(xi , yj) 

(4)

where h and k are mesh-widths along x and y directions respectively.

Above finite difference approximation to Equation (1) gives rise to following block
tridiagonal system of equations.

(5)
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where Aj′ s, j = 1(1)n are tridiagonal matrices Bj′ s and Cj′ s, j = 1(1) n are diagonal ma-
trices given by

(6)

Bj = diag[δ1j , δ2j , ... , δmj]m × m (7)

Cj = diag[η1j , η2j , ... , ηmj]m × m (8)

where j = 1, 2, ... , n.

Also αij , βij , γij, δij and ηij are defined as:

α ij = 1/h2 – aij/2h
βij = cij – 2/h2 – 2/k2

γij = 1/h2 + aij/2h (9)
δij = 1/k2 + bij/2k
η ij = 1/k2 – bij/2k

uj, j = 1(1)n is unknown column vector defined as:

uj = [u1j, u2j, ... , umj]
T 10

Vj, j = 1(1)n is right hand side modified after necessary adjustment due to given boun-
dary conditions.

Vj = [V1j, V2j, ... , Vmj]
T (11)

3. Method of Solution

The resulting structure of system of Equations (5) can be written as

AU = V (12)

Coefficient matrix A  is a block tridiagonal system having n blocks, where each block
is of the border (m × m). Let Rij, i = 1(1)m, j = 1(1)m, j = 1(1)n denotes i th row of j th
block. Elimination algorithm is as follows:

Step 1

For j = 1
Do Ri,1 = Ri,1 – (αi,1/βi–1,1) * (Ri–1,1) for i = 2 to m

Step 2

For j = 2
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(b) (i) k = i
Rij = Rij – (ηij/βkj–1) * Rkj–1

By this operation, first entry of first row of second block becomes zero and second entry
of first row of second block becomes nonzero, say 

(ii) For k = k + 1 upto m do

where “–” refers to modified entries.

(c) i = i + 1

(i)

(ii) for k = i to m (just like 2(b))

(iii)

(d) Again  go to step 2(c) upto i = m.

Step 3

(i) Put j = j +1 and repeat steps 2(a) to 2(d).
(ii) Continue this process upto j = n.

Step 4

Now the system is reduced to upper-triangular form and by back-substitution process,
we may obtain values of unknowns uij, i = 1(1)m, j = 1(1)n.

4. Storage System and Operation Counts

The subroutine has been built using the above algorithm keeping in view the mini-
mum required storage. Storage system is such that it does not require zeros or units to
be stored. Only two single-subscripted arrays A and U are required for storage, where A
requires (m +1)*m*n words and U m*n words, where m and n are number of interior
points along X and Y directions respectively.

Rij Rij ij kj Rkj= – ( ˆ / – )* –η β 1 1

ˆ ,ηij

R R Rij ij ij kj kj= – ( / )*– –η β 1 1

R R Rij ij ij kj kj= – ( ˆ / )*– –η β 1 1

R R Rij ij ij i j i j= – ( / )*– –α β 1 1

A(4) = K4
(i, j + 1)

(i, j – 1)
A(1) = K1

FIG. 2

A(2) = K2

(i –  1,  j)

A(3) = K3

(i, j)

A(5) = K5

(i+1, j)
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In general six words per row (i.e., per difference equation) are required to specify six
coefficients in the following equation, which is obtained by applying finite difference
approximation to Equation (1) at node (i, j)

K1 uij–1 + K2 ui–1j + K3 uij + K4 uij+1 +K5 ui+1j = K6

The coefficients K1 to K5 are stored in first five locations of A as shown in Fig. 2 and
right hand side K6 in A(6) for node i = 1, j = 1. Next K1, K2, ... , K6 for node i = 2, j = 1
are stored from A(7) to A(12). The six words starting with 6*m*(n – 1) + 6*(m – 1) + 1
gives K1, K2, ... , K6 for last node i = m, j = n. The remaining storage of A is used as
scratch storage. Solution is finally obtained in array U. First m entries of U provides val-
ues of unknown variable at the nodes of first row, next m entries at the nodes of second
row. Thus last m entries starting with m*(n + 1) + 1 give solution at the points of last
row. Total storage required is (m + 2)*m*n.

The algorithm requires approximately 4m3n addition operations and 3m3n + 10m2n
multiplicative operations, thus totalling m2n(7m + 10) arithmetic operations.

4.1 Test Examples

The following examples are tested using the present algorithm.

Example 1:

The equation solved is of Poisson’s type in cartesian coordinates

(13)

The structure  is given by (5)

where αij = γij = δij = ηij = 1

βij = – 4

(a) Here, ω = 2exp(x + y) (14)
Region: {(x, y), 0 ≤ x ≤ 1, 0 ≤ y ≤ 1}

Boundary conditions are

Ψ = –[exp(x + y) + (x – y) / Re] (15)

on x-axis, y-axis, x = 1 and y = 1.

Analytical solution for the Equation (13) is

Ψ = –[exp(x + y) + (x – y) / Re] (16)

(b) Ψ = log(x2 + y2) (17)
Region: {(x, y), 0 ≤ x ≤ 1,  0 ≤ y ≤ 1 }

Boundary conditions are

Ψ = – ((x2 + y2) / 4)[log(x2 + y2) – 2] (18)
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on x-axis, y-axis, x =1 and y = 1.

Analytical solution is same as (18).

Example 2

Poisson’s equation is cylindrical coordinates is

(19)

Structure is given again by (5)

where αij = 1 – h/2ri, 1 ≤ i ≤ m

βij = – 2[1 + (h/k)2]

γij = 1 + h/2ri , 1 ≤ i ≤ M

δij = ηij = (h/k)2

Domain in which equation to be solved is

{(r, z) : 0.2 ≤ r ≤ 1, 0 ≤ z ≤ }

Right hand side is as follows

f (r, z) = – 4r2 exp(–2z) (20)

Boundary conditions are specified as

u(0.2, z) = 0.96 e–2z

u(1, z) = 0

u(r, 0) = 1 – r2 (21)

u(r, 2) = e–4(1 – r2)

Exact solution for this equation is

u(r, z) = e–2z(1 – r2) (22)

Example 3

Navier-Stokes equation in its stream function vorticity form is

∇ 2 ω – Re(uωx + vωy) = 0 (23)

where

Here Ψ denotes stream function and ω denotes vorticity of the flow. To determine a
flow, Equation (23) is generally solved coupled with continuity Equation (13). Equation
(23) is a nonlinear elliptic partial differential equation, the degree of nonlinearity in-
creases with the value of Re, which denotes Reynolds number.
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After applying finite difference  formulae to Equation (23) on any rectangular region,
structure is provided by (5) where

αij = 1 + (Re/4) (Ψi,j+1 – Ψi,j – 1)

βij = – 4

γij = 1 – (Re/4) (Ψi,j + 1 – Ψi,j–1)

δij = 1 + (Re/4) (Ψι+1,j – Ψi–1,j)

ηij = 1 – (Re/4) (Ψi+1,j – Ψi–1,j)

To demonstrate the applicability of our algorithm on Equation (23), following exam-
ple is considered:

Region D = {(x, y) : 1 ≤ x ≤ 2, 1 ≤ y ≤ 2 }

Values of Ψ are assumed as predetermined and given by

Ψ = – ((x2 + y2)/4[log(x2 + y2) – 2] (24)

Boundary conditions are of Dirichlet type so that values of ω are regarded as being
known in advance and specified as

ω = log(x2 + y2) (25)

on all the boundaries

Analytical solution is same as given by Equation (25).

5. Numerical Results and Conclusion

Results for all the examples are computed taking 11 × 11 and 21 × 21 node points in
the given domain.

Results of Example 1(a) for some arbitrarily chosen points are given in Tables 1 and
2 along with exact results for Re = 100 and Re = 1000 respectively. Results for Exam-
ple 1(b) are presented in Table 3 along with exact results and results obtained by Shar-
ma and Agarwal[9]. Sharma and Agarwal[9] have applied a very efficient direct method,
viz. Hockney’s method[10] to solve the resulting system of equations. Method in detail is
discussed in Ref. [9]. The results obtained by present algorithm compare well with
those as is obvious from Table 3.

           TABLE 1. Results of Example 1(a) at some randomly chosen node points for Re = 100.

Node points 11 × 11 Node points 21 × 21

Points
Computed Exact

Points
Computed Exact

results results results results

(0.1, 0.1) – 1.22144 – 1.2214028 (0.1, 0.05) – 1.16234 – 1.1623342

(0.3, 0.2) – 1.64988 – 1.6497213 (0.9, 0.25) – 3.16472 – 3.1646929

(0.5, 0.5) – 2.71862 – 2.7182818 (0.5, 0.5) – 2.71837 – 2.7182818

(0.8, 0.7) – 4.48295 –  4.4826891 (0.25, 0.7) – 2.58126 – 2.5812097

(0.9, 0.9) – 6.04975 – 6.0496475 (0.9, 0.95) – 6.35933 – 6.3593195
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          TABLE  2. Results of Example 1(a) at some randomly chosen node points for Re = 1000.

Node points 11 × 11 Node points 21 × 21

Points
Computed Exact

Points
Computed Exact

results results results results

(0.1, 0.1) – 1.22144 – 1.2214028 (0.1, 0.05) – 1.16189 – 1.1618842

(0.3, 0.2) – 1.64898 – 1.6488213 (0.9, 0.25) – 3.15887 – 3.1588429

(0.5, 0.5) – 2.71862 – 2.7182818 (0.5, 0.5) – 2.71837 – 2.7182818

(0.8, 0.7) – 4.48205 –  4.4817891 (0.25, 0.7) – 2.58531 – 2.5852597

(0.9, 0.9) – 6.04975 – 6.0496475 (0.9, 0.95) – 6.35978 – 6.3597695

TABLE 3. Results of Example 1(b) at some randomly chosen node points.

Node points 11 × 11 Node points 21 × 21

Exact Computed
Results of

Exact Computed
Results of

Points
results results

Sharma & Points
results results

Sharma &
Agarwal[9] Agarwal[9]

(0.1, 0.1) 0.0295601 0.0297723 0.02977231 (0.05, 0.1) 0.0199438 0.0199810 0.01998104

(0.2, 0.3) 0.1313071 0.131478 0.13147763 (0.25, 0.9) 0.4660006 0.466003 0.46600230

(0.5, 0.5) 0.3366433 0.336791 0.33679135 (0.5, 0.5) 0.3366433 0.336680 0.33668001

(0.7, 0.8) 0.5304735 0.530537 0.53053658 (0.7, 0.25) 0.3581998 0.358210 0.35821047

(0.9, 0.9) 0.6146174 0.614634 0.61463382 (0.95, 0.9) 0.625938319 0.625941 0.62594041

Example 2 is an illustration of Poisson’s equation in cylindrical coordinates and is con-
sidered in detail by Mittal and Gahlaut[11]. They have derived some higher order finite
difference schemes and compared their solutions with exact solutions. Table 4 provides a
comparative study of our results and one of the higher order schemes of Mittal and Gah-
laut[11] along with exact results. Our results are in good agreement with both of these.

TABLE 4. Results of Example (2) at some randomly chosen node points.

  Node points 11 ×  11   Node points 21 × 21

Exact Computed Exact Computed
Results of

Points
results results

Points
 results results

Mittal &
Gahlaut[11]

(0.36, 0.4) 0.39109593 0.391845 (0.36, 0.4) 0.39109593 0.391288 0.39128716

(0.52, 0.8) 0.14730370 0.147891 (0.52, 0.8) 0.14730370 0.147452 0.14745197

(0.76, 0.8) 0.08528108 0.0856590 (0.76, 0.8) 0.08528108 0.0853767 0.08537642

(0.68, 1.2) 0.04876997 0.0490204 (0.68, 1.2) 0.04876997 0.0488329 0.048832753

(0.84, 1.6) 0.01200039 0.0120594 (0.84, 1.6) 0.01200039 0.0120152 0.01201513

Example 3 gives an illustration to solve Navier-Stokes equation in cartesian coordi-
nates. This example was first considered by Richards and Crane[12] and later on solved
by a fast direct solver BLTRI by Mittal and Sharma[13]. In Ref [13], a measure to check
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the overall accuracy of the algorithm at all points is given. This is called Maximum
Modulus Error (MME) and is defined as

MME = max | uij – u(xi , yj) |
i, j

        TABLE  5. Results of Example 3 at some randomly chosen node points Re = 100.

Node points 11 × 11 Node points 21 × 21

Points Exact results
Computed

Points Exact results
Computed

    results results

(1.1, 1.1) 0.88376754 0.883817 (1.1, 1.1) 0.83832919 0.838339

(1.2, 1.3) 1.141033 1.14134 (1.25, 1.9) 1.6433561 1.64339

(1.5, 1.5) 1.5040775 1.50446 (1.5, 1.5) 1.5040775 1.50417

(1.7, 1.8) 1.8131947 1.81329 (1.7, 1.25) 1.4934657 1.49352

(1.9, 1.9) 1.976855 1.97686 (1.95, 1.9) 2.0031678 2.00317

       TABLE  6. Results of Example 3 at some randomly chosen node points Re = 1000.

Node points 11 × 11 Node points 21 × 21

Points Exact results
Computed

Points Exact results
Computed

    results results

(1.1, 1.1) 0.883252 0.883252 (1.05, 1.1) 0.83832919 0.838302

(1.2, 1.3) 1.141033 1.14162 (1.25, 1.9) 1.6433561 1.64340

(1.5, 1.5) 1.5040775 1.50444 (1.5, 1.5) 1.5040775 1.50419

(1.7, 1.8) 1.8131947 1.81317 (1.7, 1.25) 1.4934657 1.49354

(1.9, 1.9) 1.976855 1.97670 (1.95, 1.9) 2.0031678 2.00317

where uij is numerically determined value, u(xi , yj) corresponding analytical value and
maximum is taken over all the internal node-points. In Ref [13], MME for Example 3 is
given as 0.000402 and 0.00579 for Re = 100 when mesh is 11 × 11 and 21 × 21 respec-
tively. Similarly for Re = 1000, values of MME are 0.000705 and 0.00162 for 11 × 11
and 21 × 21 mesh respectively. We have computed MME for all the three examples and
results are reported in Table 7. For Example 3, MME values obtained by present algo-
rithm is better than those of Mittal and Sharma[13]. Another drawback in the scheme of
Mittal and Sharma[13] was the introduction of roundoff errors with increase in number
of node-points and that is the reason for the deterioration of results for 21 × 21 mesh in
comparison to 11 × 11 mesh. The present algorithm is along the established norms,
since here by increasing node-points, results are significantly improved as is clear from
Tables 1 to 6 and MME is also decreased as shown by Table 7.
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TABLE 7. Maximum modulus error for Examples 1 to 3.

Examples Re Node points 11 × 11 Node points 21 × 21

1(a) 100 0.000353813 0.0000863075
1000 0.000353813 0.0000860691

1(b) – 0.00021219 0.00005351

2 – 0.00087428 0.00022417

3 100 0.000401855 0.000103116
1000 0.000704169 0.000165939

Conclusively, the present algorithm gives accurate results to the problems after apply-
ing finite difference schemes to elliptic partial differential equations and along with it is
also economical in computer storage.
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Z�U�d?��« «c� —U�?��« Íd?��Ë Æ cO?HM��« X�Ë s�Ë , WOM�e?���« W?F��« s� sJ?1U�
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