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Friction Pump Performance Formulation
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ABSTRACT. An attempt was made to formulate the overall performance of the
multiple-disc friction pump, first by dimensional analysis, then by deriving
and solving the integral momentum equations for laminar flow with respect to
a rotating frame attached to the axis of rotation. The performance of the stator
is taken into consideration by defining a diffuser conversion efficiency which
is then used, in addition to the rotor performance, to describe the overall per-
formance of the pump in terms of the relevant input parameters, and to gener-
ate the head and efficiency characteristics. The method was dermonstrated for a
typical set of values of the governing input parameters.

1. Introduction

Friction pumps are characterized by simple construction and low cost. They have sta-
ble, theoretically predictable performance, are highly resistant to cavitation, operate at
extremely low noise levels, and can easily be reversed to work as turbines without sig-
nificant loss of performance. Some of their potential fields of appiication are handling
highly viscous liquids and rarefied gases, as cavitation inhibiting inducers (e.g., for
rocket pumps), and as low-noise air conditioning fans.

A typical multiple-disc friction pump is sketched in Fig. 1. Like conventional
pumps, it also comprises a rotor assembly and a stator (casing). The rotor carries a large
number of closely spaced, corotating discs which are centrally bored to receive the fluid
being handled. Each pair of adjacent discs confines one pumping “element”. In contra-
diction to conventional pumps where friction is the cause of energy dissipation and
losses, friction pumps depend on viscous friction as the only mechanism to impart
angular momentum and transfer energy to the fluid. Therefore, the work transfer
process within the rotor of these machines is unavoidably accompanied by dissipation.
The radial pressure gradient in the rotor, created by the acquired fluid rotation, tends to
drive a through-flow, while viscous shear tends to oppose this through-flow. This fact
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makes it impossible for a friction pump to attain, even hypothetically, an efficiency of
unity.
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FiG. 1. Schematic of friction pump

The axial spacing between adjacent discs of a friction pump is very narrow and is of
the same order as the disc thickness, Baljel!l. This small gap width is necessary to
increase the tangential shear responsible for setting the fluid into rotation. However, a
narrow gap increases the resistance to the flow and strongly reduces the generated flow
rate. Friction pumps are therefore categorized as lowest specific speed machines and
are intended to operate in the lowest machine Reynolds number range. But in this range
of low performance, they are superior to centrifugal pumps whose head and efficiency
rapidly deteriorate with decreasing Reynolds number, Stepanoff{?] and Pieschel3].

The stator of a friction pump mainly consists of a recuperator following the rotor
which eventually includes a vaneless annular diffuser, a scroll casing and a discharge
section, and is thus similar to its counterpart in a conventional pump. The main func-
tions of the stator are the guidance of the fluid towards the pump’s discharge end, and
partial recovery of the high absolute kinetic energy at rotor’s exit. Typical literature on
friction pumps traditionally concentrates on the flow in the rotor, and almost complete-
ly ignores the stator.

In the literature, the flow in the rotor element of a friction pump has been most fre-
quently treated as laminar flow!*!6), Purely turbulent flow analyses have been under-
taken by Murata et al.l!'l and Pieschel®], and mixed laminar/turbulent flow analysis was
conducted by Koehler(!7l, In the overwhelming majority of papers, the fluid has been
considered as Newtonian and incompressible. Garrison!!4], Pieschel!’! and Piesche and
Felsch!'6) addressed compressibility effects, while Mansour!'8] recently considered
non-Newtonian fluids. Two methods of flow computation are in common use, they are



Friction Pump Performance Formulation IS5

based on either integral or differential formulation; the latter includes the methods of
finite differences and finite elements.

In the present work, the governing parameters are first worked out by a simple
dimensional analysis. The resulting dimensionless groups are then compared to, and
correlated with other forms found in the literature. Thereafter, the integral equations of
motion for laminar flow in the rotor are derived directly from the Navier-Stokes equa-
tions by partial integration across the axial gap width. In this formulation, a rotating
frame is used. The partial integration is made possible by assuming self-similar disc-to-
disc parabolic distributions for the radial and tangential components of the relative
velocity. These equations are solved numerically, and the solution is used to formulate
the performance of the rotor. A global diffuser efficiency is then introduced to describe
the performance of the stator, and the overall pump performance is finally obtained by
assembling together the performance criteria of the rotor and the stator.

2. Dimensional Analysis

Without loss of generality, the analysis may be limited to just one pumping element
of the rotor, i.e., the flow field between two adjacent rotating discs, Fig. 2.
Consideration is further limited to fluids with constant properties, thus excluding com-
pressibility and heat transfer phenomenae.
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FiG. 2. Pump element and system of coordinates.

The main independent variables governing the rotor performance fall in three cate-
gories, viz., geometrical quantities, fluid properties and control variables. Geometrical
quantities include inlet radius r|, outlet radius r,, and disc spacing b; fluid properties
include density p and dynamic viscosity u; and control variables are given by the angu-
lar speed of the rotor Q, the volume flow rate Q and the tangential (swirl) component of
the absolute inlet velocity c g, if any. As dependent variables, the specific useful energy
E=(p,-p)/p+ (c22 - c,z)/2 +g(Z, — Z,)and the efficiency n are chosen. Frequently,
the head H is used in place of E, where E=gH; sometimes gH itself is referred to as
head. The head and efficiency characteristics (i.e., the dimensional performance laws)
may thus be written in the form
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gH =gH(r,r,,b,p, 11, 0,0,¢,4) (1a)
n=n(r,nb,p.u,0,0,cq) (1b)
After applying elementary dimensional analysis, the number of independent variables is

reduced, and the above performance laws may be rewritten in the following dimension-
less forms

v=y(4,e,Ph ¢,7) (2a)
n=n(i¢e, Ph ¢,7) (2b)
The dimensionless groups appearing in Eqn (2) have the following structures
I r. e Q c gH
A=-L, =_2_,ph=b\/:, == y=—L y= 3
b n v ¢ .Qr23 4 Qn .(22r22 @

Their meanings are now discussed. Starting with the dependent groups, i.e., the head
coefficient y = gH/.erg and efficiency 7, it is seen that these are defined in a similar
way as their counterparts in conventional pumps.

Of the five independent groups on the right side of Eqn (2), the first two, namely
A=r,/band € =r,/ r|, are geometrical shape factors; they must have the same values
for geometrically similar pumps and need not be considered further if the performance
of similar pumps or one particular pump is to be studied.

The third parameter in the list, the so-called Polhausen parameter Ph=b/+/2/v , is
a measure of the ratio /8 between the gap width band the boundary layer thickness
on either disc, . Namely, we may recall that on a single rotating disc bounded by an
infinitely extending fluid, the boundary layer thickness & is proportional to
V742 ,Schlichting!!®). The Polhausen parameter has an important influence on the per-
formance, because it determines to what extent the bulk of fluid follows the rotation of
the discs, and it controls the shape of the disc-to-disc velocity distribution. Too small
Ph values approach the case of solid body rotation,while too large values correspond to
almost decoupled boundary layers on the two discs and a nonrotating core in-between.
For these reasons, in friction pumps the Polhausen parameter is usually kept within nar-
row limits, Ph<2.5-3.5. The square of Polhausen parameter, Ph2=0Qb?/v, is some-
times referred to as a Reynolds number.

The fourth independent parameter ¢ = Q/ .Qr; is a flow coefficient,and the fifthy =c o/Qr,
is a pre-whirl or swirl coefficient, which normally equals zero, unless inlet guide vanes
are fitted before the rotor to create such pre-rotation. A value of Y = | means that the
fluid has acquired a tangential velocity component exactly equal to the velocity of the
inlet edge of the rotor ¢,,=Qr,. Since W, g5=c ,—£2r, this would make w,,=0 and
eliminates any tangential shock at entry.

Any other dimensionless parameter of a structure different from the groups listed in
Eqn (3) will not be substantially different one, but may be constructed from them by
multiplication, raising to a power or a mixed operation. In the literature, dimensionless
groups of slightly different structure are frequently encountered. In the following, we
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quote three further flow coefficient definitions as alternatives to ¢, and four Reynolds
number definitions as alternatives to Ph.

TS S -2

o o’ 2 o ;3 o
2 2 2
Relzg_b__‘ Re2=Qr1b, Re3=&l_, Re4=.{2r2
v v v 1%

The quantities ), and ;, are the mean values over the gap width of the radial compo-
nents of the inlet and exit velocities respectively.

It is easy to establish the relations between the above parameters and those in Eqn
(3), namely

1 3 ] 3
=—A¢€’ 9, =—A€9, =c
o " ¢ ¢ oy o ¢
Re,=Ph*, Re;=APh*, Rey=A’Ph%, Re,=A*&’ Ph?

It should be noted that if other effects, such as compressibility or variable physical
properties p, i, k, ..., are present, other influence parameters like Mach number M,
Prandtl number Pr, Eckert number Ec, ... etc, would have to be included.

3. Mathematical Formulation

The describing equations for the flow in the rotor element are formulated with
respect to a rotating frame using cylindrical coordinates (r, 6, z), Fig. 2. The relevant
velocity in this frame is the relative velocity w with components (w,,wg, w,) in the

three principal directions This relative velocity is related to the absolute velocity ¢,seen in
- =2 2 95 S
a fixed frame by: c =w+ 2% r =w+u. The two velocities only differ in their tangential

components, i.e., ¢, =w,, Cg=wg+u=wo+ Qrandc,=w

The following simplifications are introduced: (1) The fluid is Newtonian with con-
stant properties; (2) The flow is steady, d()/dt=0; (3) The flow is axially symmetric,
d()/36=0; (4) axial velocity component is negligible, w_ = 0; (5) The flow is symmet-
ric with respect to the midplane z = b/2; (6) Body forces are negligible; (7) Radial gra-
dients are much smaller than axial gradients, 3()/9r << &)/9z, 0%()/9r2 << F()/ 3z

The symmetry with respect to the midplane z = /2 makes it possible to limit con-
sideration to the half region (0 < z < b/2). Subject to the above conditions, the Navier-
Stokes and continuity equations, and the associated boundary conditions may be writ-
ten as follows:

3.1 Momentum Equations

aw 2 wi ow 1dp d*w
ro_ ZQW 6 ) r.__ 2 r 4
'3, [.Q r+ g+ rj+w” P par+v F 4)

8w6 07w9 82w9
20w, (5)
T2 9z or
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ap

ZE-p 6
dz
3.2 Continuity Equation
dw, w, dw
+ 2 %% _p @)
dr r 0z

3.3 Boundary Conditions

r=n: w,=w
z=0,b: w, =0, we =0
b, dw, 9wy _

2" Jz 9z ®
The degenerating Eqn (6) implies p#p(z), and the axial symmetry condition d/96=0
implies p# p (). Therefore, the pressure only varies in radial direction, i.e., p = p(r),
and dp/dr=dp/dr.

4. Solution

A crucial step in all integral methods of solution is the suggestion of meaningful
velocity profiles. In the present case, these profiles are w (r, z) and wy(r,z) since w,
is assumed to be absent. Rice and co-workers!’"10 developed an integral method in
which polynomial velocity profiles 2,-’:0 a,-(r)zi with N 24 are used. Their formulation is
capable of handling the 3D flow in the entrance region where w,#0, and can accomo-
date large gap widths. The simpler approaches of Hasinger and Kehrt!%], and NendI(®!
are based on parabolic disc-to-disc radial and tangential velocity distributions which
implicitely neglect the entrance length. Namely, in analogy to pipe flow, we can antici-
pate that the entrance length is proportional to the gap width b and depends on the
Reynolds number Re (or the Polhausen parameter Ph). Since these both are small quan-
tities in friction pumps, e.g., Ph < 2.5-3.5, the entrance length is expected to be small,
and the assumption appears to be justified. For the sake of simplicity, this approach is
adopted in the present work. The two non-vanishing velocity components w, (r, z) and
wg(r, z) are then expressed in a product form as follows

Wr(r’z) = er* q(")h(Z) (9a)
wo(r,2)=Wq, f(r)s(z) (9b)

where the bar above a quantity indicates its mean value over the gap width at any radial
station.

q(r)=wr(r), f(r)=w9—(r), h(z):iv&z_)‘ s(z)= We(’vz)

Wir Wig w,(r) Wg(r)
The 4 and s functions are arbitrarily taken to be parabolic as follows, c.f.[6]:

h(z)=s(z)=6-lz;(l—§) (10)
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The integrated form of the continuity Eqn (7) gives immediately the solution for the g-
function as

(n=-=
q =7 (1

If the momentum equations, Eqn (4) and (5), are then partially integrated with
respect to z over the integration domain (0,5/2), the following ordinary differential
equations are obtained

dP 2 f2 , 1 120 1

—=R+2(y-Df +k(y - 1)" = + k¢ — - —- —

IR (y=Df +k(y-1 R L 2 PR (12)
d
dR R k Ph'¢, k(y-1)
where dimensionless notation has been introduced according to the following defini-
tions

(13)

R=Z, P=LP -9 y2)(2)dz and Z=
n pier

2
b

The approach followed in the present work in deriving Eqn (12) and (13) directly
from the Navier-Stokes and continuity equations is different from that followed by
Nendl(6), The initial conditions are given by

R=1: f=1, P=0 (14)

Equations (12) and (13) form a set of two coupled, first order ordinary differential
equations. Together with the initial conditions, Eqn (14), they constitute an initial-value
problem. This problem is well suited to numerical solution by a standard Runge-Kutta
routine that advances the solution step by step from the known inlet section (R = 1)
towards the exit section (R =€ ). Once f(R) and P(R) have been solved for, the per-
formance can be easily calculated.

5. Performance

Most authors confine their analysis to the flow in the rotor only. Such an approach
exaggerates both head and efficiency of the pump. Namely, the high kinetic head at
rotor’s exit is counted in such formulations as useful head, but in fact it cannot be com-
pletely recovered as static head in the following recuperator passages, especially in this
low Reynolds number flow situation. A primary design goal would be the recovery of
the largest possible part of this kinetic head by careful design of the diffuser passages.
The success of such an effort can be described by a suitably defined conversion effi-
ciency. In the following, a diffuser efficiency of the recuperator, 1,, is defined and
included in the overall performance evaluation.

5.1 Heads

The theoretical head, expressed as g H,,, is defined as the one which would be
obtained if the work done by the rotor on the fluid were fully available without any dis-
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sipation; it is directly obtained by applying Euler’s equation of turbomachineryl!!
8H, =uscrg—u ciy (15a)
Applying this to the present case we obtain

, k Y
H =ul|l+= -+
gH, u.[ +Ef(e)(7 ) e.} (15b)

o . . . 22
or in dimensionless form, with ¥, =g H,, /27 r;3

k
W,,,=l+gf(6)(7—1)—el: (16)

However, this theoretical head coefficient is not completely available at rotor’s exit,
because part of it is lost within the rotor by different dissipation mechanisms. Rotor
losses are attributed to viscous shear in both tangential and radial directions, in addition
to tangential entrance shock (if y# 1).

The total head coefficient at rotor’s exit, ¥, ,,,,,- is composed of a static and a dyna-
mic part, viz.,

WO. rotor — l//.\'.mmr + VJL/. rotor (17)
These head coefficients are obtainable from the solution of Eqn (12)-(14), namely
py—-p, Ple)
W,\.mmr = 2 I = —T (IS)
pus €
(&3 -¢1)12
WLI.I'UNH' = —T—“
112
| oy o9t
=—{(1+1(7—l>f(e)) —y—z——é(l——zj} (19)
2 € € € €

Since at pump’s discharge the velocity is of the same order as at pump’s intake, the
high velocity at rotor’s exit will have to be reduced in the following stator passages.
The static head recovery in the recuperator can be expressed as

W.\'. reuzp: Ny l//d, rotor (20)
and the pump’s useful head becomes
w= l//\ mmr+ l/,\ recup = W,\, rotor + ntl Wd. rotor (2‘)

5.2 Reaction

A commonly used definition of the degree of reaction that is valid both for pumps
and compressors is the ratio of static enthalpy rise in the rotor to static enthalpy rise in
the whole pump. In the present work an alternative definition that is frequently used for
pumps and fans, c.f., Pfleiderer®®! and Eck(*!}, is adopted. In this definition static
enthalpies are replaced by static pressures

°R = W\_lulul

- WU_H/IHI (22)
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It is worth noting that both definitions of reaction become identical for incompress-
ible fluids undergoing isentropic processes because for such processes changes in
enthalphy and changes in pressure are directly proportional, as can be seen from Gibbs
equation, Tds =dh—dp /p.

5.3 Efficiencies
The rotor’s efficiency is defined as

WO rotor
r] o =— (23)
rotor v,

The hydraulic efficiency which expresses the hydraulic performance of the whole
pump, including the stator is given by

v

m=— (24)
Wm
and the overall efficiency is obtained by multiplying with the mechanical efficiency
n= r’m nh (25)

The mechanical efficiency is defined as the rotor gross power n g H,, divided by the in-
put shaft power mg H, + AW ., where AW, is the mechanical power losses external to
the rotor, e.g., in bearings, seals and disc friction, ie.,

H
= _"_lg_ﬂ___ (26a)
mgH,+AW.
Defining a power loss coefficient
A WHI
ém Py
2mp27br;
Eqn (26a) may be rewritten in a dimensionless form as
Ny == Wy _ I (26b)

¢W:h +€m - 1+ ém /(¢th)

Following Pfleiderer29 and Eck[?!'l, it may be assumed that AW, is almost exclusively
governed by the speed of rotation. Consequently, along a constant-speed characteristic
both AW, and {, may be regarded as constant.

m

6. Discussion and Conclusion

The solution of the describing system of equations, Eqn [12]-[14], and the perfor-
mance evaluation with the help of Eqn [16]-[25] has been programmed for any given
input. This input consists of the radius ratio €, the Polhausen parameter Ph, the pre-
whirl factor y, the diffuser efficiency 17, and the mechanical power loss coefficient o
As an example, the representative set of input values (e =2.5, Ph =3, y=0,1n,=05,
£, = 0.05) is assigned. The performance quantities y, °R. 17, and 1) are then computed
for various values of the flow coefficient ¢, =T, / £2r,. All head coefficients and the
degree of reaction are plotted versus ¢, in Fig. 3, while efficiencies are plotted separate-
ly in Fig. 4.
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FiG. 3. Head characteristics and reaction.
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FiG. 4. Efficiency characteristics.
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From Fig. 3 it is seen that all head coefficients and the degree of reaction increase
monotonically with decreasing flow coefficient. This confirms the fact that friction
pumps are better performers at lower flow rates than they are at higher flow rates. As
seen from Fig. 4, the same trends are true for the rotor efficiency and the hydraulic effi-
ciency. However, this monotonous behaviour is not maintained for the overall efficien-
cy. The overall efficiency goes through a maximum before dropping back to zero at
shutoff. The optimum flow coefficient at which this maximum occurs depends on the
value of the Polhausen parameter, being lower for higher Ph values.

In concluding this brief discussion, it may be noted that although the above curves
were produced for laminar flow using a simple integral approach based on parabolic
velocity distributions, the trends depicted remain valid for more sophisticated integral
or differential flow methods.
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Nomenclature
b gap per element
¢ absolute velocity
/' w,/¥, . function
g gravity constant; function
fi function
H  head
k  shape factor
- mass flow rate
p  pressure
P P-Plpu}
Ph  Polhausen parameter
4  function
Q  volume flow rate
r radial coordinate
s function
R rir
°R  degree of reaction
Re Reynolds number

1 time
u  Qr
w  relative velocity
W power (rate of work done)
axial coordinate
Z /b, also elevation above datum
Greek Symbols
prewhirl factor
ryfr,
efficiency
rilb

dynamic viscosity
kinematic viscosity
density

flow coefficient

head coefficient
angular speed of rotor
power loss coefficient

N ES®T R o3 M
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Subscripts

0

(5]

m

~

74

- @

total

at inner radius

at outer radius
dynamic, diffuser
hydraulic
mechanical

radial

static

axial

tangential
tangential component at inlet
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