

Contents lists available at SciVerse ScienceDirect

Superlattices and Microstructures

journal homepage: www.elsevier.com/locate/superlattices

Synthesis and physical properties of mixed Co₃O₄/CoO nanorods by microwave hydrothermal technique

Reem M. Al-Tuwirqi^a, A.A. Al-Ghamdi^a, Faten Al-Hazmi^a, Fowzia Alnowaiser^b, Attieh A. Al-Ghamdi^c, Nadia Abdel Aal^d, Farid El-Tantawy^{e,*}

^a Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

^b Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia

^c King Abdulaziz City for Science and Technology, Electronics, Communications, and Photonics Program, Riyadh, Saudi Arabia

^d Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia, Egypt

^e Department of Physics, Faculty of Science, Suez Canal University, Ismailia, Egypt

ARTICLE INFO

Article history: Received 18 March 2011 Received in revised form 30 May 2011 Accepted 29 June 2011 Available online 17 September 2011

Keywords: Nanorods cobalt oxide Microwave hydrothermal synthesis Microstructure and optical Electrical and magnetic properties

ABSTRACT

A mixture of crystalline Co₃O₄/CoO nanorods with non-uniform dense distribution has been successfully synthesized by microwave hydrothermal technique. The synthesized nanorods have been characterized by several techniques such as X-ray diffraction (XRD), field emission scanning electron microscopy (FE-SEM), energy-dispersive X-ray spectroscopy (EDX), and Fourier transforms infrared spectroscopy (FT-IR). The results showed that the as synthesized specimens contained mixed crystalline Co₃O₄/CoO nanorods with an average length of around 80 nm and an average diameter of 42 nm. UV-Vis spectrum of the nanorods exhibited a strong UV emission. The band energy gap of the product was 1.79 eV which lies between the energy gap of CoO and that for Co_3O_4 . The obtained carrier concentration is of the order $4.32\times 10^{27}\,m^{-3}$ and the dielectric constant is found to be 4.89. The electrical conductivity increases with increasing temperature and behaves as a semiconducting material with an activation energy of a bout 0.26 eV. This makes the as synthesized mixed Co₃O₄/CoO nanorods very useful for supercapacitor devices application. Magnetic hysteresis loops at room temperature of the as synthesized mixed oxides (Co₃O₄/CoO) nanorods exhibit typical soft magnetic behavior.

 $\ensuremath{\textcircled{}^\circ}$ 2011 Published by Elsevier Ltd.

* Corresponding author.

0749-6036/\$ - see front matter @ 2011 Published by Elsevier Ltd. doi:10.1016/j.spmi.2011.06.007

E-mail address: faridtantawy@yahoo.com (F. El-Tantawy).